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Abstract
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credit-related macroeconomic measures such as the default spread and VIX, and predicts
future realized defaults. Furthermore, our measure predicts future equity and corporate
bond index returns, particularly at the one-year horizon, and even after controlling for many
traditional return predictors such as the dividend yield, default spread, inflation, and tail
risk. These predictability results are robust to out-of-sample tests.

∗Bao is from the Federal Reserve Board of Governors, jack.c.bao@frb.gov. Hou is from the Ohio State
University, Fisher College of Business and China Academy of Financial Research, hou.28@osu.edu. Zhang is from
the Ohio State University, Fisher College of Business, zhang.7805@osu.edu. We thank Antje Berndt, Stephen
Brown, Tarun Chordia, Lorenzo Garlappi, Stefano Giglio, Jingzhi Huang, Andrew Karolyi, Ron Masulis, Eckhard
Platen, David Rapach, Rik Sen, Zhaogang Song, Rene Stulz, Dragon Tang, Harold Zhang, conference participants
at the UBC Winter Finance Conference, ABFER Annual Conference 2016, 9th Annual SoFiE Conference, CICF
2016, and seminar participants at Australian National University, CKGSB, LSU, Macquarie University, Monash
University, Peking University, Seoul National University, Tsinghua PBC, University of New South Wales, University
of Queensland, and University of Technology Sydney, for helpful comments and discussions. Hou and Zhang
gratefully acknowledge funding support from the Research Grant Council of the Hong Kong Special Administrative
Region, China. The views expressed here are those of the authors and not necessarily those of the Federal Reserve
System or its staff. All remaining errors are our own.

1



1 Introduction

As illustrated by a number of academic studies and starkly by the Global Financial Crisis of

2007 – 2009, tail risk and the threat of default can have significant impact on asset prices.1 In this

paper, we construct a novel measure of systemic default, which measures the joint probability of

default of many firms. Our measure is constructed largely from accounting variables and historical

equity return dynamics, avoiding the mechanical relation with expected future returns embedded

in measures based on observed (and contemporaneous) prices. We find that our systemic default

measure is high during recessions and exhibits a strong positive correlation with the default spread.

Furthermore, it predicts future aggregate returns for both equities and BAA corporate bonds

even after controlling for a series of other variables shown in the literature to predict returns. Our

results are also robust to running out-of-sample tests.

To construct a measure of systemic default, we generalize the CAPM-style Merton model of

Coval, Jurek, and Stafford (2009). Similar to their model, we assume that firms have a value

process that follows a Geometric Brownian motion and that shocks to firm value have both a

market term and an idiosyncratic term. The market term allows for correlated defaults, which

can have significant effects on joint default probabilities as compared to assuming independent

firm value processes. Coval, Jurek, and Stafford (2009) then make a homogeneous portfolio

assumption, whereby firms have identical parameters. While this assumption is innocuous in their

setting as they study portfolios of mortgages (for which a portfolio’s components can plausibly

be homogeneous), it does not apply to the very heterogeneous set of firms publicly traded in the

U.S. Instead, we provide an important generalization that allows us to calculate the probability

of at least x% of heterogeneous firms defaulting. Focusing on S&P 500 firms and also all above

NYSE median market capitalization CRSP firms, our measure of systemic default is then the

probability that at least 1%, 2%, or 5% of firms will default in the next year.

1There is a long literature on the impact of tail risk on prices. Bates (2000), Pan (2002), and Cremers, Driessen,
and Maenhout (2008), among others, find that there is a jump risk premium. Defaults are effectively the most
extreme tail risks. In addition, the equity literature, including Fama and French (1993, 1996) argue that default
risk is priced in equities.
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Next, we examine the properties of our measure and its relation to macroeconomic conditions.

We find that it is high during recessions, particularly during the recent Financial crisis and the early

1980s and 1990s recessions. A one standard deviation increase in our systemic default measure is

associated with a roughly 30 basis point increase in the default spread, a commonly used measure

of business conditions2 that is also particularly applicable to default risk. Furthermore, we find

that measures of market volatility such as VIX are strongly related to our joint default measure.

We also find that when our joint default measure is high, future defaults are more frequent. Overall,

our results suggest that systemic default is an important measure of macroeconomic conditions

and in particular, is related to other measures of default.

Examining the relation between our systemic default measure and future equity and corporate

bond returns at horizons ranging from one month to five years, we find that our measure has

significant power to predict future returns. Predictability is particularly strong at horizons of six

months to two years, which is reasonable given that our measure is designed to measure joint

default probabilities at one-year horizons. At a one-year horizon, a one standard deviation increase

in our measure predicts an increase in future excess CRSP value-weighted returns of 4.5% and

an increase in excess Barclays BAA index3 returns of 5.6%. Furthermore, we also see significant

predictability in S&P 500, CRSP equal-weighted, and BAA - AAA returns. Somewhat surprisingly,

we find some evidence of predictability in Barclays AAA index and Treasury excess returns.

Controlling for the predictors of equity returns examined by Welch and Goyal (2008), which

include standard predictors such as book-to-market, dividend yield, and inflation, along with the

Kelly and Jiang (2014) tail risk measure, we continue to find significant predictability with similar

economic magnitudes as our univariate results.4 Next, we follow Welch and Goyal (2008) and run

out-of-sample tests to ensure that our results are not simply an in-sample phenomenon. Many of

2See Fama and French (1989). See Bai (2015) for a recent discussion of the default spread and its drivers.
3The Barclays bond indices were the Lehman indices until Lehman’s bankruptcy in 2008 and Barclays’

subsequent acquisition of some Lehman assets.
4In particular, both our measure and Kelly and Jiang’s measure predict returns significantly. This is due to

the fact that the measures reflect different parts of asset value distributions. Their measure is based on daily
equity returns with cut-offs on the order of -3 to -5%, whereas our measure is based on joint defaults, even more
extreme negative events.

3



the predictors considered by Welch and Goyal (2008), have very negative out-of-sample R2 values,

particularly in the later parts of their sample. We find positive R2 values for many of our equity

predictability regressions, particularly when we use 5% joint default and also for the predictability

of CRSP equal-weighted returns. Out-of-sample tests are also strong for Barclays BAA index

returns. In contrast, out-of-sample tests are consistently poor for Barclays AAA index returns

and Treasury excess returns, the two safest classes of securities that we consider. This overturns

the surprising in-sample predictability that we had found for these assets.

Finally, we consider whether it is joint default at the aggregate or industry level that drives our

predictability results. We estimate joint default for each of the Fama-French 12 industries and in

univariate results, finding that industry-level joint default positively predicts future industry-level

equity returns for both equal-weighted and value-weighted portfolios. However, the significance of

industry-level joint default largely disappears once we control for aggregate joint default. Overall, we

argue that our systemic default measure is a robust measure of aggregate macroeconomic conditions

that does well in predicting future asset returns of portfolios exposed to significant default risk.

Our paper is related primarily to three literatures. The first is the literature on structural

models of default. Vassalou and Xing (2004) use a Merton (1974) model to calculate distance-

to-default at the firm level.5 We adapt their methodology to calculate some firm-level parameters

before constructing our systemic default measure. Our joint default measure builds on Coval,

Jurek, and Stafford (2009), who in turn use an extension of the Merton model. We add an

important extension that allows for heterogeneity, making the model applicable to firms and not

just homogeneous portfolios of mortgages. Other papers have shown the failure of structural

models of default to match the level of yield spreads (e.g., Eom, Helwege, and Huang (2004) and

Huang and Huang (2012)), but the ability of these models to match relative equity and corporate

bond returns and fundamental volatility (e.g., Schaefer and Strebulaev (2008), Bao and Pan (2013),

and Huang and Shi (2013)). Due partly to these results, we largely use equity returns as inputs

5A recent paper by Atkeson, Eisfeldt, and Weill (2014) uses the inverse of equity volatility to approximate
firm-level distance-to-insolvency and uses the cross-sectional median value as a measure of the financial soundness
of the U.S. economy.
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into a Merton-like model in our calculations rather than levels of prices from credit markets.

A second related literature is a literature on calculating tail risk. Kelly and Jiang (2014) use

observed daily equity returns to calculate tail risk, using a methodology from Hill (1975). As

discussed earlier, our measure captures a different part of the distribution and empirically, both

our measure and theirs are relevant for predicting future returns. Seo (2014) and Gao and Song

(2015) calculate tail risk using CDS and out-of-the-money options, respectively. An important

conceptual difference is that we use accounting ratios and observed equity returns to calculate a

P-measure joint default rate. While we argue that there are economic reasons to believe that joint

default probabilities can predict future returns, the relation is not due to a direct measurement

of time-varying risk premia. By matching to market prices of securities that pay-off in tail events,

both Seo (2014) and Gao and Song (2015) calculate Q-measure tail events. That is, their measures

embed risk premia, potentially including tail risk premia. Though the measurement of Q-measure

tail risk is interesting, predictability of returns using such measures is not surprising. Our measure,

instead, avoids the direct use of any pricing information from option and credit markets.6

Finally, our paper is related to a long literature on aggregate predictability which has largely

focused on equities. Early exceptions are Keim and Stambaugh (1986) and Fama and French

(1989), who look at the predictability of bond and stock returns using variables such as the dividend

yield, default spread, and term spread. More recent papers including Lettau and Ludvigson

(2001), Lewellen (2004), and Ang and Bekaert (2007), have examined the robustness of equity

return predictors.7 Welch and Goyal (2008) provide a detailed summary of the literature, in

addition to evidence that many equity return predictors are not robust across periods or in

out-of-sample tests. Compared to the existing literature, our main contribution is to provide a

new economically-founded variable that measures the probability of a significant fraction of firms

defaulting together and to show that this variable predicts both equity and corporate bond returns.

The rest of the paper is organized as follows. In Section 2, we discuss how our systemic default

6See also Giglio (2014), who uses CDS and bond prices to construct bounds on the probability that several
banks default together, without significant functional form assumptions.

7See also Bakshi and Chen (1994), Kothari and Shanken (1997), Pontiff and Schall (1998), Lamont (1998),
Baker and Wurgler (2000), Goyal and Santa-Clara (2003), and Baker and Stein (2004).
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measure is computed. In Section 3, we discuss the empirical properties of our measure. Results on

predictability are presented in Section 4 and robustness checks and out-of-sample tests are presented

in Section 5. In Section 6, we examine predictability at an industry level. Section 7 concludes.

2 Measuring Systemic Default

2.1 General set-up

Our primary measure of systemic default is based on calculating the probability that at least x%

of S&P 500 firms will default over the next year. Importantly, an average of the default rates

of all firms in the sample does not measure the same thing as the probability of many defaults.

As illustrated vividly in the Subprime mortgage crisis, the probability of many defaults is much

higher in reality than under the assumption of uncorrelated defaults.8 To do this, we start with the

underlying assumption that all firms have a value process that follows a Geometric Brownian Motion

dVi,t
Vi,t

=µidt+b1,iσ1dZ
A
1,t+...+bN,iσNdZ

A
N,t+σidZ

I
i,t, (1)

where all of the dZ are independent of each other and the superscript A indicates a common

shock while the superscript I indicates an idiosyncratic shock. The firm value process has N

shocks that are common across firms, but independent from each other. Each firm can have

different loadings on the common shocks and it is through these common shocks that firm defaults

are correlated. Very negative common shocks make all firms simultaneously more susceptible to

default. In practice, once the firm-level loadings on common shocks are calculated, the N common

shocks and the idiosyncratic shock can be aggregated into a single Brownian term as the sum

of N+1 independent normal random variables.

8Much of the intuition for correlated defaults comes from the literature on pricing tranches in collateralized
mortgage obligations. See, for example, Coval, Jurek, and Stafford (2009).
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2.2 Calculating asset returns

Our first goal is to calculate firm-level asset returns in order to be able to determine the exposure

of each firm’s asset returns to aggregate shocks. Unfortunately, asset returns are not easily

observable.9 Thus, we use accounting variables and equity returns to calculate asset returns. Prior

to doing this calculation, it is useful to simplify equation (1) to10

dVi,t
Vi,t

=µidt+σv,idZi,t, (2)

where σv,i=
√
b21,iσ

2
1+...+b2N,iσ

2
N+σ2i .

Thus, the goal is to calculate a time series of ∆logVi,t and a σv,i for each firm. To do this, we

adopt a modification of the Vassalou and Xing (2004) methodology. For each firm-month, we

start with a dataset that has the last 120 monthly log equity returns for the firm along with

start-of-month values of equity market capitalization, face value of debt (measured as DLC +

1
2
×DLTT), and the one-year Treasury rate associated with each of the 120 months.11 We use the

following iterative procedure that draws from Vassalou and Xing (2004).12

1. Start with σE,i, the volatility of monthly log equity returns as an initial guess for σv,i.

2. Calculate a time series of firm values Vi,t for the firm using the standard Merton (1974)

pricing equation

E=VN(d1)−Ke−rTN(d2). (3)

9In principle, one could construct firm-level returns by calculating the weighted-average of corporate bond
and equity returns as in Hecht (2000). However, not all firms have corporate bonds traded and even for firms
with corporate bonds, trading can be sparse, producing noisy estimates of returns. See Doshi, Jacobs, Kumar,
and Rabinovich (2015) for a recent example of backing out firm returns from equity returns and a Merton model.

10This aggregation of both idiosyncratic and common shocks to a single Brownian term is conceptually similar
to calculating the total volatility of a return rather than the systematic and idiosyncratic terms separately.

11We require at least 60 months of full data for the calculation.
12Our procedure differs fromVassalou and Xing (2004) in that they use daily returns over the past year. Instead, we

use monthly returns over a longer history. In addition, we also have a subtle difference in matching to equity returns
and directly calculating asset returns using hedge ratios. We find that our calculated survival probabilities (based
on all firms, not just S&P 500 firms) have a correlation with the data posted on Maria Vassalou’s website of 0.65.
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3. Using the current guess of σv,i, the time series of Vi,t from step (2) and log equity returns,

calculate log asset returns from

∆logE=

[
N(d1)

N(d1)−K
V
e−rTN(d2)

]
∆logV , (4)

where equation (4) follows from the Merton hedge ratio,

∂logE

∂logV
=
dE

dV

V

E
=

VN(d1)

VN(d1)−Ke−rTN(d2)
, (5)

and is essentially a de-leveraging equation.13

4. Use the time series of log asset returns from step 3 to calculate a new σv,i. If the new σv,i

is within 1e-4 of the previous σv,i, the process is complete. Otherwise, use this new σv,i in

step (2) and repeat.

Once this process is complete, we have two primary sets of outputs. The first is the asset

volatility, σv,i. The second is for each firm-month, a time series of log asset returns for the last

120 months. Using this data, we can calculate firm-level survival probabilities as

pi,t=N

log
(

Vi,t
Ki,t

)
+
(
µi− 1

2
σ2v,i
)
T

σv,i
√
T

, (6)

where

Ki,t=DLCi,t+
1

2
DLTTi,t

µi=∆logVi,s×12+
1

2
σ2v,i, and

Vi,t is inferred from equation (3).

13Note that in the de-leveraging equation, we calculate the hedge ratio using firm-level parameters at t−1 and
log equity returns for the period from t−1 to t. Our choice to use hedge ratios stems from empirical evidence
that Merton hedge ratios are effective. See, for example, Schaefer and Strebulaev (2008), Bao and Pan (2013),
Huang and Shi (2013), and Bao and Hou (2014).
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2.3 Common firm value shocks

With a panel of asset returns calculated above, our next challenge is to calculate common factors.

Rather than assuming what the common factors are (e.g., assuming a market factor or a particular

multifactor set-up14), we use principal components analysis and take the first few principal compo-

nents of asset returns as common factors. We perform PCA at the end of month t on the subset of

firms that belong to the S&P 500. After performing principal components analysis, we extract the

first five principal components. Denote these as PC1 to PC5.
15 To determine the loadings on the

common factors in equation (1), we run the following regression for each firm i in each month t

∆logVi,s=b0,i+b1,iPC1,s+...+b5,iPC5,s+ei,s. (7)

The six volatility parameters in equation (1) are determined from the volatilities of the five principal

components and the error term, respectively. Keep in mind that the principal components can

be expressed using arbitrary units and this does not affect our following analysis because what

is important is bj,i times the volatility of PCj. If the magnitude of PCj is scaled up, its volatility

is also scaled up, but bj,i will be scaled down correspondingly.

2.4 Calculating the correlated default probability

With all of the parameters in the firm value process in equation (1) calculated, we can calculate the

probability of at least x% of firms defaulting by applying a simple insight from Coval, Jurek, and

Stafford (2009). Conditional on the realizations of the common shocks, the default probabilities

of the firms are independent of each other. Before delving into the details of the calculation, it

is useful to take the firm value process in equation (1) and combine the common shocks by again

taking advantage of the fact that the sum of independent normal random variables is a normal

14See Fama and French (1996) and Hou, Xue, and Zhang (2015).
15Empirically, the first principal component explains an average of 31.5% of the variation while the first five

principal components together explain an average of 45.9% of the variation. Our choice of five principal components
arises from the fact that by the fifth principal component, the additional explanatory power is only 2.1% on average.
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random variable. Equation (1) can be re-written as

dVi,t
Vi,t

=µidt+σidZ
I
i,t+σA,idZ

A
t , (8)

where σA,i=
√
b21,iσ

2
1+...+b25,iσ

2
5.

Define T as some period in the future and τ=T−t. We know the distribution of log asset value

conditional on the realization of ZA
T has only one source of uncertainty, the idiosyncratic shock.

logVi,T |ZA
T =logVi,t+

(
µi−

1

2
σ2i−

1

2
σ2A,i

)
τ+
√
τσA,iZ

A
T +
√
τσiZ

I
i,T (9)

The conditional probability of firm i’s survival is

P(si,t|ZA
T )=N(d2,i), (10)

where d2,i=
log
(

Vi,t
Ki

)
+
(
µi− 1

2
σ2i− 1

2
σ2A,i

)
τ+
√
τσA,iZ

A
T

σi
√
τ

.

The important property that conditioning gives us is that P(si,t|ZA
T ) is independent of P(sj,t|ZA

T )

for all i 6=j. This means that we can calculate the conditional probability of firms i and j both

surviving as P(si,t|ZA
T )×P(sj,t|ZA

T ). In principle, this calculation can be done for an arbitrarily

large number of firms and all 2m possibilities can be enumerated, where m is the number of firms.

The probability that M or more firms default can then be calculated by adding up the probabilities

across all scenarios where at least M firms default. In practice such a direct enumeration is not

feasible and we discuss a dimension-reducing enumeration methodology in the Appendix. Consider

that even if we were to restrict our estimation to Dow Jones firms, this would require 230=1.07×109

possibilities, conditional on a realization of ZA
t . The unconditional probability (as described below)

requires an integration over the distribution of ZA
t , so a reasonable calculation using a 32-point

quadrature would require 32 iterations of 1.07×109 possibilities. In comparison, our enumeration

methodology is able to calculate the unconditional probability for 300 firms (an order of magnitude
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larger than the Dow Jones index) in a couple of seconds. Coval, Jurek, and Stafford (2009) avoid

this enumeration problem by making a homogeneous portfolio assumption. That is, they assume

P(si,t|ZA
T )=P(sj,t|ZA

T ) ∀i,j (11)

This makes the conditional probability of joint default follow a binomial distribution, greatly

simplifying the calculations. Since Coval, Jurek, and Stafford (2009) focus on providing numerical

analysis of representative portfolios of mortgages, it is reasonable to make this assumption in their

setting. As we are attempting to estimate the joint default probability of firms, which can be

very heterogeneous, this assumption is not appropriate for our setting. In particular, it is not

unreasonable to assume that 100 mortgages have the same default probability, conditional on

market conditions, especially if the mortgages are loans to households with similar credit scores

and in the same region of the country. It is, however, unreasonable to assume that S&P 500 firms

all have the same default probability, conditional on market conditions.

Finally, to calculate the unconditional probability of at least M defaults, we can simply

integrate over the density function of ZA
T .

∫ ∞
−∞
P(At least M defaults|z)f(z)dz, (12)

where f(z) is the normal probability density function.

3 Data & Systemic Default Estimates

3.1 Data

To construct our systemic default series, we use equity returns from CRSP and balance sheet

information from Compustat. All Compustat data is lagged by three months to allow for reporting

delays. The risk-free rate used in our calculation of default probabilities is the one-year Treasury

rate from the U.S. Treasury’s Constant Maturity Treasury series. The tail risk measure of Kelly
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and Jiang (2014) is constructed using daily CRSP returns, following the procedure outlined in

Sections 1 and 2 of their paper. The remaining independent variables are from Amit Goyal’s

website. This includes AAA and BAA bond yields, which are originally from FRED and Treasury

yields originally from Ibbotson’s Stocks, Bonds, and Bills Inflation Yearbook along with variables

constructed by Welch and Goyal (2008) and extended to more recent periods.

Equity index returns (used as dependent variables) are directly from CRSP. Corporate bond

index returns are from Datastream and are Barclays (formerly Lehman) indices. The AAA index

is the Barclays United States Aggregate Corporate AAA index (LHIGAAA) and the BAA index

is the Barclays United States Aggregate Corporate BAA index (LHIGBAA). The Treasury index

is the 10-year Treasury bond series from CRSP.

3.2 Systemic Default Estimates

Using the methods discussed in Section 2, we construct the probability of at least 1%, 2%, or 5%

of S&P 500 firms defaulting over the next year.16 While our base analysis uses all S&P 500 firms

with sufficient historical data to estimate firm-level parameters (including loadings on aggregate

factors), we also consider the robustness of our results to eliminating financials or using all firms

with above NYSE median equity market capitalization in CRSP (Section 5.1).17 In Table 1, we

provide summary statistics of our joint default estimates and we plot the time series in Figure

1, along with NBER recession periods.18

A striking trend of our joint default estimates is that it spikes during recessions. During the

recent Global Financial Crisis, the estimated probability of at least 1% of firms defaulting went above

90%, the largest value in our sample. We see similar, though smaller, spikes during recessions in the

mid-1970s, the early 1980s, and the early 1990s. Interestingly, a spike in joint default probability

in 2002 followed the Tech bubble in the early 2000s instead of occurring during the recession itself.

16While the analysis in the paper focuses on the number of firms that default since our measure is based on
the idea that a systemic default event is one in which a large number of prominent firms default, in Appendix
B we consider additionally imposing a restriction on the total value of firms defaulting.

17Using all CRSP firms introduces defaults from smaller firms that are less likely to significantly impact market
conditions. Hence, we restrict to larger firms.

18Figure 2 plots joint default probabilities for firms above NYSE median equity market capitalization.
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This peak followed the delisting of Enron and preceded the delisting of Owens Corning, both in 2002.

The mean probabilities of at least 1%, 2%, and 5% of firms defaulting are 20.5%, 7.9%, and

0.8%, respectively. The probability of 5% of firms defaulting hovers around 0 for most of the

sample, consistent with this being an extreme and unlikely left-tail event. The probability of 1% or

2% of firms defaulting is not nearly as extreme. In reality, we do sometimes see a significant number

of S&P 500 firms default. For example, in 2002, Armstrong Holdings Inc, CNO Financial Group

Inc, Enron Corp, Global Crossing Ltd, MCI Inc, Owens Corp, and US Airways Group Inc (Old)

were all delisted with delisting codes of 560 (insufficient capital, surplus, and/or equity) or 574

(bankruptcy, declared insolvent). Thus, 2% default is arguably the right balance between having

a very unlikely event, but one that is not so unlikely that it almost always has a probability of 0.

An important caveat for our joint default measure is that it is a structural model-based

estimate of the joint default of firms based on the firms remaining as standalone companies. The

model does not account for government bailouts of firms,19 nor does it account for distressed firms

that are acquired by other firms before default.20 Thus, we consider our joint default measure

an estimate of the probability of x% of firms defaulting absent interventions by the government

or other firms. Even more broadly, it is a macroeconomic measure of the general expectation of

a default crisis in the near future.

Next, we consider how our measure is related to the default spread, a traditional measure

of aggregate default expectations. Defined as the difference between the yields on BAA bonds

and AAA bonds, the default spread is meant to capture default expectations by benchmarking

a set of moderately risky bonds (BAA) against very safe bonds (AAA). AAA bonds are used

instead of Treasuries as part of the gap between BAA and Treasuries can be due to illiquidity

19See Strahan (2013) for a survey of too-big-to-fail in financial firms. Though bailouts of financial firms are the
most commonly known, government action has been taken in the past to stabilize large firms in other industries.
For example, the Air Transportation Safety and System Stabilization Act was passed after 9/11 and provided
loans to airlines, the state of California provided a bailout of PG&E in 2003, and the federal government intervened
in GM in the recent financial crisis. See Azgad-Tromer (2015) for further discussion.

20For example, Bear Stearns was delisted in May 2008 (with a delisting code of 231) after being acquired by J.P.
Morgan Chase. Though anecdotal evidence suggests that Bear Stearns likely would have defaulted absent this acquisi-
tion, we never actually observe a default. SeeMeier and Servaes (2014) for further discussion of distressed acquisitions.
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or tax reasons.21 Though it is likely true that there is some difference in liquidity between AAA

and BAA bonds, the default spread nevertheless is a proxy for aggregate default expectations.

In Panel A of Table 2, we consider the contemporaneous relation between the default spread and

our joint default measure. We find a statistically and economically significant relation. Regressing

the default spread on 1% joint default probability, we find an R2 of 44.5%, implying a correlation

of 66.7%. The R2 for 2% joint default probability is similar at 43.4%. Using 5% joint default

probability, we see a smaller R2 of 22.5%. The smaller correlation with 5% joint default probability

arises from the fact that 5% joint default probabilities largely reflect only the worst economic

states, whereas the 1% joint default probability and default spread reflect variation in much more

moderate economic states. Controlling for other known predictors of the default spread22), we

continue to find a significant relation between the default spread and joint default probability.

In Panels B and C of Table 2, we consider the relation of joint default probability with BAA

- Treasury and AAA - Treasury spreads, respectively. We find evidence that the BAA - Treasury

spread is related to joint default probabilities, though we lose statistical significance for 1% and

5% joint default probabilities once controls are included. This loss of statistical significance occurs

even though the economic significance is comparable to Panel A. It is important to keep in mind

that the BAA - Treasury spread reflects both differences in default expectations between BAA

and Treasury bonds and also differences in liquidity. The differences in liquidity make the BAA -

Treasury spread a noisier measure of aggregate default relative to the default spread, decreasing the

statistical significance of any regressor without necessarily affecting the point estimate much. In

Panel C, we consider the AAA - Treasury spread, which reflects a strong liquidity component and

not much of a default component. Here, we find virtually no relation with our joint default measure.

We also investigate the contemporaneous relation between joint default probability and measures

of equity and bond return volatility in Table 3. In Panel A, we consider VIX, finding a consistent

positive relation between VIX and joint default. A one standard deviation increase in joint default

21See Bao, Pan, and Wang (2011) for a discussion of corporate bond illiquidity and Chen (2010) and Feldhutter
and Schaefer (2015) for a discussion of the use of BAA-AAA spreads to mitigate tax and liquidity issues.

22See Duffee (1998), Collin-Dufresne, Goldstein, and Martin (2001), and Campbell and Taksler (2003).
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is associated with an increase in VIX of roughly two to four percentage points. In Panel B, we

replace VIX with realized equity index volatility, continuing to find that a one standard deviation

increase in joint default is associated with an increase in realized equity volatility by two to four

percentage points. The R2 of these regressions are smaller than in Panel A, likely reflecting the

fact that the dependent variable is estimated from realized returns, leading to decreased statistical

precision without biasing coefficient estimates. In Panels C and D, we consider bond index return

volatilities instead, finding that joint default is related to contemporaneous return volatilities for

both the AAA index and the BAA index. Overall, our evidence suggests that our joint default

measure is correlated with other measures of risk for both equities and corporate bonds.

3.3 Predicting Future Defaults

Next, we turn to the question of whether our joint default measure, which is designed as a

P-measure probability of many joint defaults, actually predicts future defaults. Though we have

cautioned in the previous section that our joint default measure is a measure that does not take

into account interventions by other firms or the government and is probably best thought of as a

macroeconomic index, its validity nevertheless relies on a positive correlation with future defaults.

To construct a measure of defaults, we use data from CRSP and consider all delistings with a

delisting code of 560 (insufficient capital, surplus, and/or equity) or 574 (bankruptcy, declared

insolvent). We find an average default rate over the next year of 0.85%.

To examine the ability of our measure to predict future defaults, we run the regression

%Defaultt=a+bpt−1+εt, (13)

where %Defaultt is the percentage of firms that default over the next year and pt−1 is our joint

default measure. We normalize our joint default measure to have zero mean and unit variance

for ease of interpretation and present results in Table 4. We find that a one standard deviation

increase in our joint default measure is associated with a roughly 20 basis point increase in the
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future default rate, an economically significant magnitude compared to the mean default rate of

85 basis points. Thus, we do see that when our model estimated probability of many joint default

is high, the future number of defaults is higher on average.

4 Return Predictability

4.1 Univariate analysis

To examine the predictive power of our systemic default measure, we run a standard return

predictability regression

rt=a+bpt−1+εt, (14)

where pt−1 is our systemic default measure and rt is the annualized excess return of an index over

different holding periods. To account for overlapping returns, we use Hodrick (1992) standard

errors.23 As before, we normalize our systemic default measure to have zero mean and unit variance

to facilitate interpretation. Note that such normalization simply scales the coefficient and has

no effect on t-statistics. Though the mean and variance of the joint default series is not known

ex-ante, this does not induce a look-ahead bias in the regression. Instead, it is equivalent to

an econometrician running the standard predictability regression and normalizing the coefficient

ex-post when interpreting economic significance.

In Table 5, we present results on predictability of equity, corporate bond, and Treasury bond

index returns using our systemic default measure. We see that 2% joint default predicts excess

returns across security markets. In particular, a one standard deviation increase in the systemic

default measure predicts an increase in one-year excess returns of 4.46% for the CRSP value-

weighted index and 5.60% for the BAA corporate bond index. The strength of predictability tends

23See Singleton (2006) and Ang and Bekaert (2007) for a discussion of Hodrick standard errors compared to
Hansen and Hodrick (1980) and Newey and West (1987) standard errors. We also consider bootstrap standard
errors. Similar to Kelly and Jiang (2014), we find that bootstrap standard errors produce even stronger results
than those based on Hodrick standard errors.
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to be greater for the CRSP equal-weighted index than it is for the S&P 500 or CRSP value-weighted

indices, suggesting that high systemic default tends to have a stronger effect on the required return

of small firms. This is consistent with investors requiring higher returns for smaller firms in poor

economic times because they are more concerned with the effect of macroeconomic conditions

on these firms. In addition, previous literature (e.g., Kothari and Shanken (1997) and Pontiff and

Schall (1998)) has found predictability to be stronger for equal-weighted than value-weighted indices.

For bonds, we find that predictability is stronger for BAA bonds than AAA bonds and that the

difference is statistically significant. While a one standard deviation increase in the systemic default

measure predicts an increase in excess one year returns of 5.60% for BAA bonds, it predicts only a

3.11% increase for AAA bonds. The difference is statistically significant. For long-term Treasuries,

we find even smaller predictability, with a coefficient of 2.15%. The stronger predictability for lower

grade corporates is natural as our predictor variable is a measure of systemic default. If the market

is particularly concerned about default, we would expect an increase in investment in safe assets

such as AAA corporates and Treasuries. This would decrease the expected return on safe securities.

Hence, the positive predictability for AAA corporates and Treasury bonds is somewhat of a surprise.

In Table 5, we consider three versions of our systemic default measure, 1%, 2%, and 5% joint

default. Results are weaker for the 1% measure (Panel A) than the 2% (Panel B), and 5% (Panel

C) measures, particularly for equities. This suggests that the predictive power for our systemic

default measure arises from relatively rare joint default events. Recall that the mean of 1% joint

default is more than 20%, making it unlikely, but not a rare event. In contrast, 2% and 5% joint

default have means of 7.9% and 0.8%, making them significantly rarer events.
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4.2 Controlling for other predictors

A natural question is whether our systemic default measure is just one of the traditional default

measures in disguise.24 Thus, we run a multivariate regression,

rt=a+bpt−1+cZt−1+εt, (15)

where pt−1 is our systemic default measure, Zt−1 is a vector of other return predictors, and rt is

an annualized index excess return over different holding periods. As other return predictors, we

consider the variables from Welch and Goyal (2008) and also the tail risk measure from Kelly

and Jiang (2014).

We present results for the S&P 500, the CRSP value-weighted index, and the CRSP equal-

weighted index in Panels A, B, and C of Table 6, respectively. We focus on 2% joint default

probability as it strikes a reasonable balance between having events that are far enough in the left

tail, but not so far in the left tail as to have zero probability most of the time. Systemic default is con-

sistently a predictor of equity returns at one-to-two-year horizons even after controlling for 13 other

traditional equity return predictors. A one standard deviation increase in the systemic default mea-

sure predicts an increase in future one-year excess returns of 5.20%, 5.32%, and 7.72% for S&P 500,

CRSP value-weighted, and CRSP equal-weighted returns, respectively. Compared to the previously

discussed univariate results, we see hardly any change in the economic impact of systemic default.

The 13 controls largely fall into four groups and we discuss the most significant controls in

turn. Book-to-Market, Earnings Price Ratio, and Dividend Payout Ratio are variables that have

been linked in the cross-sectional literature as predicting relative returns either due to measuring

investor sentiment (e.g., Lakonishok, Shleifer, and Vishny (1994)) or measuring firm fundamentals

(e.g., Fama and French (1992)). In the time series, Fama and French (1988) find that both

Dividend Price Ratio and Earnings Price Ratio positively predict future equity returns. Kothari

and Shanken (1997) and Pontiff and Schall (1998) find that Book-to-Market positively predicts

24For example, in the cross-sectional equity return literature, Jackson and Johnson (2006) argue that momentum
and postevent drift are both manifestations of persistence in returns following news.
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future equity returns. In univariate analysis, we find positive and significant predictability for

equity returns for all three variables. When included in a multivariate regression in Table 6, we

see that Book-to-Market is significant, but of the wrong sign in most specifications, while Earnings

Price Ratio tends to be positive and significant, and Dividend Price Ratio insignificant.

Turning to interest rate-related variables, we see that the Term Spread positively predicts

equity returns. As argued in Fama and French (1989), the Term Spread is a measure of the term

premium, the required premium for holding long-term (interest rate sensitive) securities. If we

think of pricing equity using a dividend discount model, the duration of equity securities is much

closer to long-term bonds than Treasury bills.

Next, we find that net equity expansion, a measure of equity issuance, positively predicts

equity returns in a multivariate regression framework. This provides seemingly contradictory

evidence to Baker and Wurgler (2000), who find that when there is more equity issuance (relative

to debt issuance), the equity market tends to do poorly afterwards. However, we find that this

inconsistency is due to the multivariate regression framework. In univariate regressions, net equity

expansion negatively predicts future equity returns.

Finally, we find that the Kelly and Jiang (2014) tail risk measure is a positive predictor of

excess equity returns. Initially, it may seem somewhat surprising that both their measure and ours

are significant predictors of equity returns as both measures are designed to measure tail events.

While the measures draw from roughly similar concepts, what they measure is different. The

Kelly and Jiang (2014) measure uses daily returns to measure tail risk. The tail threshold in their

estimates are often on the order of -3 to -5% (for individual firm daily returns), significant negative

events, but not on the order of multiple large firms defaulting. Thus, the significance of both

measures draws from the fact that the two measures are estimates of different parts of the left tail.

In Table 7, we turn to multivariate regression analysis of bond return predictability. We continue

to see that our systemic default measure predicts bond returns. A one standard deviation increase in

the systemic default measure predicts an increase in one-year BAA excess returns of 6.18%. We also

see similar predictability for AAA and Treasury bond excess returns. This is somewhat surprising
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in light of their low exposure to default risk. In Section 5.2 below, we provide some evidence that

suggests that predictability in these low default securities is only an in-sample phenomenon.

Among the control variables, we see strong significance in the Dividend Price Ratio, the Long

Term Yield, and the Term Spread. As with equities, the Dividend Price Ratio is surprisingly

negative. Both the Long Term Yield and the Term Spread positively predict bond returns. These

are both natural as we would expect there to be a term premium embedded in long-term bond

returns. When this premium is higher, the required return on bonds is higher.

5 Out-of-Sample Tests & Other Considerations

5.1 Alternative systemic default measures

For most of the paper, we have presented results where our systemic default measure is constructed

using all S&P 500 firms. The only restriction other than S&P 500 membership at the time

of construction is that firms have enough historical data to allow for calculation of firm-level

parameters (as described in Section 2.2) and common firm value shocks (Section 2.3). Though the

use of S&P 500 firms is natural as the default of the largest firms in the U.S. economy is a plausible

ex-ante indication of trouble in financial markets, we consider two alternative choices here. First,

while it was clearly illustrated in the Global Financial Crisis that the health of financial firms

is extremely important for the economy, one might be concerned about the use of a structural

model in estimating the default probability of financial firms. Hence, we also consider results with

financial firms omitted. Second, one might be concerned that defaults of non-S&P 500 firms are

also relevant to aggregate economic conditions. Hence, we also construct our joint default measure

using all firms above the NYSE median equity market capitalization in CRSP.25

Multivariate results using the alternative joint default measures are presented in Table 8. For

brevity, only the joint default coefficients from the multivariate regressions using 2% joint default

25An alternative would be to use S&P 1500 firms, but the S&P 1500 index was not launched until 1995, whereas
our joint default series starts 20 years earlier.
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are reported, and the coefficients of the controls are omitted in the tables. In Panel A, we present

results on a measure using S&P 500 firms, but omitting financials. We see that at a one-year

horizon, our systemic default measure has predictive power across indices with particularly strong

predictive power for the CRSP equal-weighted index. A one standard deviation increase in our

measure is associated with an increase in future 12-month excess returns of 6.94% in the CRSP

equal-weighted index. We also see strong results for corporate bonds, as a one standard deviation

increase in our measure predicts an increase in excess returns of 3.29% and 3.90% in AAA and

BAA excess returns, respectively. For the corporate bond indices, we see predictability for horizons

from one month all the way to 36 months. We also see evidence of predictability for Treasury

bonds as a one standard deviation increase in our systemic default measure predicts a 2.50%

increase in Treasury bond excess returns. Furthermore, we also see evidence of predictability at

six month and 24 month horizons for most indices.

In Panels B and C, we consider all CRSP firms that are above the NYSE median for equity

market capitalization with and without financials. We continue to find evidence of significant

predictability, particularly at the 12-month horizon. Overall, we find considerable evidence that

joint default predicts future returns across different asset classes, even under these alternative

estimates of joint default.

5.2 Out-of-sample tests

Though our evidence to this point suggests that systemic default is a powerful macroeconomic vari-

able that predicts index returns across security classes, Welch and Goyal (2008) argue that findings

of in-sample predictability should be interpreted with some skepticism. Instead of a sole focus on

in-sample predictability, they argue that it is important to test the out-of-sample performance of re-

turn predictors before concluding that there is predictability.26 Welch and Goyal (2008) show strong

evidence that equity return predictability is an in-sample phenomenon for many traditional return

predictors. For example, they find out-of-sample R̄2 values of -1.93% and -20.79% for dividend yield

26We refer readers to Section 2 of Welch and Goyal (2008) for details of the empirical tests.
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when using the full history of data and only 1977 – 2006, respectively. The interpretation of their

out-of-sample R̄2 is that if the predictor performs worse than simply setting forecasts to the sample

mean, R̄2 is negative. Hence, their evidence suggests that particularly in the later part of their

sample, dividend yield is not a useful predictor of equity returns. They find a similar pattern for

a series of other predictors, including earnings yield, book-to-market, and investment-capital ratio.

We use only the data available to time t and run the predictive regressions of the market

index returns on the joint default risk measures as in the main univariate test. Then we construct

the out-of-sample forecast of the market index returns for the next month. To allow enough

observations in forming the initial estimates, we require at least 240 historical observations. The

out-of-sample R2 is calculated as R̄2 = 1−
∑

t(r̂t+1|t−rt+1)
2/
∑

t(r̄t−rt+1)
2, where r̂t+1|t is the

index return forecast using data up until t, and r̄t is the historical average return until t. Further

we conduct the out-of-sample predictive power test using the method proposed in Clark and

McCracken (2001), following Welch and Goyal (2008) and Kelly and Jiang (2014).

In Table 9, we present out-of-sample test results for our systemic default measure. Focusing on

our 2% joint default measure, we see that our predictability results for AAA corporate bond and

Treasury bond returns are only in-sample phenomena. Across horizons, R̄2 values are negative,

indicating that predictive regression underperform sample means. However, we find that our

measure has positive and statistically significant out-of-sample predictive power especially for

CRSP Equal-weighted and BAA corporate bond returns. Out-of-sample R̄2 values are also positive

for longer-run CRSP Value-weighted returns. For 5% joint default, we see positive out-of-sample

R̄2 values for all equity indices and the both the BAA corporate bond index and the spread

between BAA and AAA index returns.

The consistently poor out-of-sample performance for AAA corporate bonds and Treasury bonds

overturns a somewhat surprising in-sample result on predictability. AAA corporates and Treasuries

have little exposure to default risk, making it surprising that a measure designed to capture

joint default should predict their returns. In addition, flight-to-safety phenomena documented

in the literature suggest that, if anything, expected returns to safe assets such as AAA bonds
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and Treasuries should decline in poor economic states as investors flee to these safe assets.27 In

contrast, expected returns on riskier assets should rise. Thus, the significant out-of-sample results

for equities and BAA corporates along with the insignificant out-of-sample results for low default

assets supports the argument that our measure is an important macroeconomic measure of default.

6 Predicting Industry Returns

As a final set of tests, we consider whether it is joint default probability of large firms in the economy

or joint default of firms in the same industry that is relevant for returns. Thus far, our analysis has

found that high joint default probability of large firms in the economy predicts higher future returns

for both equities and (default-sensitive) corporate bonds. It is possible that the risk premium is

actually more closely tied to the joint default risk of an industry and that aggregate default is only

proxying for an industry-level effect. For example, if there is a high joint default probability in the

Chemicals industry, it may be the case that investors require a higher return on Chemicals, but

not all firms. Simultaneously, there may be some other industries that also have high joint default

probability. In this case, aggregate default will be relatively high. Because expected returns in

these high joint default industries will tend to be large, all else equal, overall market returns

will also be expected to be high. This would lead to the finding that high joint default (across

industries) predicts higher market returns even though the effect is truly at the industry level.

Whether it is aggregate or industry-level default that drives predictability is an empirical question.

To examine the power of industry-level joint defaults to predict returns, we start by applying

the methodology of Section 2 industry-by-industry for Fama-French 12 industries. We estimate

joint default using all firms in an industry above the industry’s median equity market capitalization.

Next, our goal is to simultaneously estimate 12 predictive regression equations of the form,

rit=ai+bipi,t−1+εit,i=1,...,12, (16)

27See Baele, Bekaert, and Inghelbrecht (2010) for a discussion of flight-to-safety and how it affects Treasury
and equity returns.
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where i indexes industry, pi,t−1 is the joint probability of industry i estimated at the end of

month t−1, and rit is the return of industry i from the start of month t to some future period.

There are multiple ways to estimate this system of equations. A natural estimation methodology

would be to run 12 separate regressions. This, however, makes joint hypothesis testing difficult

and is not efficient. Alternatively, the 12 equations can be simultaneously estimated as a set of

Seemingly Unrelated Regressions (SURs). Unfortunately, while a SUR estimation allows error

terms to be correlated across equations, it does not allow for autocorrelation. Instead, we adopt

a GMM estimation with Newey-West standard errors that allows for both cross-correlation and

autocorrelation. In fact, Newey-West estimates on a panel allow for cross-correlations not only

contemporaneously, but also a lead-lag structure in cross-correlations.28 In our GMM estimates

of the series of 12 equations in (16), there are 24 moment conditions,

1

T

∑
t

εit,i=1,...,12, (17)

1

T

∑
t

xitεit,i=1,...,12.

In this system, we have 24 moment equations to estimate 24 parameters, so the system has no

overidentifying restrictions. In Table 10, we report the results for our estimates of equation (16).

For Non-Durables, Manufacturing, Utilities, Shops, and Other, we see evidence that industry-level

joint default predicts industry-level value-weighted returns at most horizons. Results based on

equal-weighted returns are even stronger, with predictability also in Durables, Chemicals, Business

equipment, and Health. We also perform two sets of Wald tests. In the first set of tests, we test

whether the average predictability coefficient is zero. Specifically, we test 1
12

∑
ibi=0. Next, we test

whether the coefficients are jointly equal to zero, b1= ...=b12=0. We see in Table 10, both hypothe-

ses are strongly rejected. In sum, we find that industry-level default predicts industry-level returns.

In Table 11, we augment equation (16) to control for aggregate joint default. We use the same

28See Cochrane (2001). The Bartlett estimate, as in Newey and West (1987), estimates the spectral density

matrix as Ŝ=
∑k

j=−k

(
k−|j|
k

1
T

∑T
t=1(utu

′
t−j)

)
, where ut=[uit,...,uNt]

′. ut is a vector of errors in period t for the

N moment conditions in the GMM system.
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GMM estimation as before, but it is now a system of 36 moment conditions and 36 parameters (one

new moment equation for each industry to estimate a coefficient on joint default). We find that

aggregate default largely drives out the significance of industry-level joint default. In particular,

Wald tests find that the average coefficient is significantly different from zero for aggregate default

at most horizons while the average coefficient for industry default is typically not found to be

different from zero. Thus, we conclude that it is, in fact, joint default at the aggregate level that

is most relevant for future equity and corporate bond returns.

7 Conclusion

In this paper, we build on a CAPM-like Merton model from Coval, Jurek, and Stafford (2009)

to construct an systemic default measure. The measure is based on calculating the probability of

many joint defaults. As illustrated vividly in the recent Subprime mortgage crisis, it is important to

account for correlations in shocks when calculating the probability of joint defaults, and following

Coval, Jurek, and Stafford (2009), we model this as exposure to common factors. To apply the

joint default methodology, we generalize the model to avoid making a homogeneous portfolio

assumption, whereby all firms have the same parameters. While this is a reasonable simplification

for studying portfolios of mortgages, it is not suitable for studying a very heterogeneous set of

firms. We devise a numerical procedure that allows for firm heterogeneity, but avoids enumerating

all possible combinations of defaults and survivals. This makes an estimation of joint default over

a large set of firms feasible.

Our systemic default measure shows significant correlation with the business cycle, peaking

during NBER recessions and remaining fairly low during quiet periods. We find that our measure

robustly predicts future equity and BAA corporate bond returns, particularly for a one-year horizon.

This predictability is robust to a series of controls, including the controls in Welch and Goyal

(2008) and the tail risk measure of Kelly and Jiang (2014). We surprisingly find some evidence of

in-sample predictability for AAA corporate bonds and Treasuries, but the results are not robust
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to the out-of-sample tests advocated by Welch and Goyal (2008). Finally, we find that even when

predicting industry returns, it is aggregate joint default, not joint default at an industry level

that drives predictability. Overall, we find that systemic default is an important macroeconomic

variable that is able to explain expected returns in securities exposed to default risk.
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Tables & Figures

Table 1: Summary Statistics for Joint Default Estimates

Variable Mean Std. Dev. Skewness Min. Max.
1% 0.205 0.231 1.196 0 0.908
2% 0.079 0.136 2.452 0 0.733
5% 0.008 0.027 6.328 0 0.288
N = 496

This table reports summary statistics for 1%, 2% and 5% joint default probabilities estimated
using S&P 500 firms.
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Table 2: Systemic Default and the Default Spread

Panel A: BAA-AAA Yield Spread
1% 2% 5% 1% 2% 5%

Joint Default 0.315*** 0.311*** 0.224*** 0.120*** 0.122*** 0.0711***
(7.53) (7.78) (5.72) (3.21) (3.82) (2.96)

Market Leverage -0.139*** -0.114*** -0.117*** -0.134***
(-3.21) (-2.74) (-2.92) (-3.23)

Market Volatility 0.354*** 0.293*** 0.296*** 0.327***
(9.64) (7.31) (7.80) (8.78)

Idiosyncratic Volatility -0.277*** -0.249*** -0.255*** -0.272***
(-6.50) (-6.04) (-6.39) (-6.68)

3M Treasury Yield 0.429*** 0.311*** 0.326*** 0.401***
(8.33) (5.21) (6.06) (8.03)

Term Spread 0.264*** 0.211*** 0.215*** 0.251***
(7.13) (5.50) (5.91) (7.04)

P/E Ratio 0.0757** 0.0718** 0.0657* 0.0644*
(1.98) (1.97) (1.84) (1.76)

Industrial Production -0.0932*** -0.0696*** -0.0645*** -0.0788***
(-5.22) (-4.24) (-4.04) (-4.77)

Constant 1.115*** 1.115*** 1.115*** 1.116*** 1.116*** 1.116*** 1.116***
(25.00) (24.85) (20.17) (37.34) (39.04) (40.14) (39.11)

Observations 489 489 489 487 487 487 487
Adjusted R2 0.445 0.434 0.225 0.671 0.700 0.707 0.687

Panel B: BAA-Long Treasury Yield Spread
1% 2% 5% 1% 2% 5%

Joint Default 0.316*** 0.351*** 0.285*** 0.101 0.133** 0.0416
(4.32) (5.33) (4.99) (1.55) (2.40) (1.03)

Market Leverage -0.174** -0.152** -0.150** -0.170**
(-2.40) (-2.11) (-2.13) (-2.37)

Market Volatility 0.539*** 0.487*** 0.475*** 0.523***
(8.84) (7.02) (7.21) (8.11)

Idiosyncratic Volatility -0.250*** -0.227*** -0.226*** -0.247***
(-3.48) (-3.12) (-3.20) (-3.45)

3M Treasury Yield 0.299*** 0.200* 0.187** 0.283***
(3.45) (1.91) (1.98) (3.23)

Term Spread 0.171*** 0.126* 0.117* 0.163***
(2.75) (1.88) (1.84) (2.62)

P/E Ratio 0.0367 0.0335 0.0259 0.0302
(0.60) (0.55) (0.43) (0.49)

Industrial Production -0.140*** -0.120*** -0.109*** -0.131***
(-4.78) (-4.30) (-3.98) (-4.70)

Constant 1.837*** 1.837*** 1.837*** 1.836*** 1.835*** 1.835*** 1.836***
(23.37) (24.67) (23.02) (36.14) (35.97) (36.84) (36.25)

Observations 489 489 489 487 487 487 487
Adjusted R2 0.211 0.260 0.171 0.567 0.576 0.587 0.569

Panel C: AAA-Long Treasury Yield Spread
1% 2% 5% 1% 2% 5%

Joint Default 0.00149 0.0401 0.0606* -0.0190 0.0108 -0.0295
(0.03) (0.94) (1.78) (-0.48) (0.31) (-1.19)

Market Leverage -0.0344 -0.0384 -0.0325 -0.0367
(-0.78) (-0.88) (-0.74) (-0.84)
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Market Volatility 0.185*** 0.194*** 0.179*** 0.196***
(4.94) (4.61) (4.34) (4.99)

Idiosyncratic Volatility 0.0268 0.0225 0.0288 0.0248
(0.61) (0.51) (0.65) (0.57)

3M Treasury Yield -0.130** -0.111* -0.139** -0.118**
(-2.46) (-1.76) (-2.36) (-2.23)

Term Spread -0.0931** -0.0846** -0.0975** -0.0874**
(-2.45) (-2.08) (-2.44) (-2.31)

P/E Ratio -0.0389 -0.0383 -0.0398 -0.0343
(-1.03) (-1.02) (-1.05) (-0.91)

Industrial Production -0.0467** -0.0504*** -0.0441** -0.0526***
(-2.54) (-2.85) (-2.49) (-2.98)

Constant 0.722*** 0.722*** 0.722*** 0.720*** 0.720*** 0.720*** 0.720***
(14.91) (14.99) (15.19) (23.21) (23.41) (23.17) (23.47)

Observations 489 489 489 487 487 487 487
Adjusted R2 -0.002 0.008 0.022 0.438 0.438 0.437 0.441

The table reports results from the following regressions: CSt=α+βpt+γZt+εt. The dependent
variables are the levels of BAA-AAA, BAA-Long Treasury and AAA-Long Treasury yield spreads.
pt represents the estimated 1%, 2% and 5% joint default probabilities. Zt represents a vector of
control variables: Market leverage is total liabilities divided by the sum of total liabilities and
the market value of corporate equity in the non-financial corporate sector; Market Volatility is
the six-month moving average of monthly realized market volatility estimated from daily returns;
Idiosyncratic volatility is the six-month moving average of the average idiosyncratic realized stock
return volatility estimated from daily returns; Term spread is the 10-year minus 3-month treasury
yields; Price-earning ratio is the price-earning ratio of the S&P 500 index; Industrial production
is the growth rate of the industrial production index. All independent variables are normalized
to unit standard deviation, so reported coefficients are scaled to be interpreted as the percentage
yield spread change from a one-standard-deviation increase in the independent variable. Test
statistics are calculated using Hodrick’s (1992) standard error correction for overlapping data with
lag length equal to the number of months in each horizon. 1%, 5% and 10% statistical significance
are indicated by ***, **, and * respectively.
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Table 3: Systemic Default and Volatility

Panel A: VIX
1% 2% 5% 1% 2% 5%

Joint Default 3.845*** 3.971*** 2.780*** 4.073*** 3.802*** 2.103***
(3.52) (4.11) (4.31) (5.35) (5.58) (4.50)

Market Leverage -1.568 0.186 -0.489 -1.280
(-0.92) (0.13) (-0.35) (-0.83)

Idiosyncratic Volatility 4.822*** 5.035*** 4.870*** 4.796***
(4.80) (6.15) (5.90) (5.26)

3M Treasury Yield -6.989*** -9.997*** -9.234*** -7.884***
(-3.60) (-6.17) (-5.78) (-4.51)

Term Spread -3.768*** -5.314*** -4.761*** -4.087***
(-2.95) (-5.03) (-4.55) (-3.55)

P/E Ratio -0.324 -1.127 -1.204* -1.004
(-0.39) (-1.63) (-1.75) (-1.33)

Industrial Production -0.175 1.384*** 1.364*** 0.661
(-0.32) (3.31) (3.28) (1.42)

Constant 21.40*** 20.89*** 20.14*** 13.87*** 15.11*** 14.49*** 13.86***
(18.90) (19.61) (18.73) (9.44) (12.23) (11.87) (10.41)

Observations 286 286 286 285 285 285 285
Adjusted R2 0.209 0.243 0.187 0.403 0.552 0.554 0.486

Panel B: Equity Volatility
1% 2% 5% 1% 2% 5%

Joint Default 2.051** 2.386*** 2.548*** 3.671*** 3.165*** 1.775***
(2.48) (3.09) (4.03) (5.12) (4.77) (3.22)

Market Leverage 1.079 1.609* 1.445 1.128
(1.07) (1.78) (1.57) (1.16)

Idiosyncratic Volatility 3.327*** 3.536*** 3.395*** 3.220***
(3.67) (4.37) (4.11) (3.66)

3M Treasury Yield -1.872 -5.166*** -4.295*** -2.468**
(-1.58) (-4.27) (-3.68) (-2.15)

Term Spread -1.179 -2.635*** -2.316*** -1.460*
(-1.38) (-3.29) (-2.89) (-1.77)

P/E Ratio 0.680 -0.185 -0.179 0.129
(0.78) (-0.23) (-0.22) (0.15)

Industrial Production -1.054** 0.0681 0.0105 -0.549
(-2.30) (0.17) (0.03) (-1.27)

Constant 14.53*** 14.54*** 14.55*** 14.55*** 14.50*** 14.52*** 14.54***
(16.51) (16.93) (17.68) (21.17) (23.71) (23.30) (21.92)

Observations 489 489 489 487 487 487 487
Adjusted R2 0.056 0.078 0.089 0.221 0.328 0.309 0.254

Panel C: AAA Corporate Bond Index
1% 2% 5% 1% 2% 5%

Joint Default 1.778*** 1.827*** 1.335*** 0.805** 0.979*** 0.768***
(5.63) (6.35) (6.20) (2.48) (3.26) (4.16)

Market Leverage 1.383** 1.603*** 1.564*** 1.484***
(2.49) (3.08) (3.17) (3.02)

Idiosyncratic Volatility 0.845*** 0.726*** 0.672*** 0.717***
(3.28) (2.98) (2.89) (3.13)

3M Treasury Yield -1.879*** -1.696*** -1.552*** -1.590***
(-2.98) (-2.94) (-2.83) (-2.90)
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Term Spread 0.449 0.414 0.513 0.577*
(1.20) (1.23) (1.61) (1.78)

P/E Ratio 0.461** 0.326* 0.260 0.225
(2.22) (1.67) (1.37) (1.17)

Industrial Production -0.215 -0.0440 -0.0138 -0.0782
(-1.29) (-0.28) (-0.09) (-0.51)

Constant 6.342*** 6.059*** 5.593*** 4.529*** 5.297*** 5.327*** 4.997***
(21.45) (23.72) (21.20) (9.85) (9.89) (11.19) (11.94)

Observations 237 237 237 236 236 236 236
Adjusted R2 0.268 0.287 0.252 0.392 0.414 0.425 0.440

Panel D: BAA Corporate Bond Index
1% 2% 5% 1% 2% 5%

Joint Default 1.100*** 1.068*** 0.647*** 0.828*** 0.832*** 0.362**
(5.14) (5.10) (3.85) (3.49) (3.54) (2.26)

Market Leverage 0.753* 0.980** 0.908** 0.801*
(1.70) (2.51) (2.35) (1.92)

Idiosyncratic Volatility 0.853*** 0.730*** 0.706*** 0.792***
(4.14) (4.04) (3.89) (4.04)

3M Treasury Yield -0.781 -0.593 -0.503 -0.645
(-1.58) (-1.42) (-1.20) (-1.39)

Term Spread 0.582** 0.546** 0.636** 0.642**
(1.97) (2.20) (2.57) (2.32)

P/E Ratio -0.0483 -0.187 -0.219 -0.160
(-0.28) (-1.14) (-1.34) (-0.93)

Industrial Production 0.00122 0.178 0.172 0.0660
(0.01) (1.54) (1.53) (0.55)

Constant 5.843*** 5.648*** 5.363*** 4.922*** 5.713*** 5.600*** 5.143***
(29.77) (31.37) (27.63) (13.57) (14.72) (15.30) (14.46)

Observations 237 237 237 236 236 236 236
Adjusted R2 0.206 0.197 0.117 0.302 0.352 0.351 0.322

The table reports results from the following regressions: σt =α+βpt+γZt+εt. The dependent
variables are the VIX index (Panel A) and annualized return volatilities for the CRSP value-
weighted index (Panel B), the Barclays AAA index (Panel C), and the Barclays BAA index (Panel
D). pt represents the estimated 1%, 2% and 5% joint default probabilities. Zt represents a vector
of control variables: Market leverage is total liabilities divided by the sum of total liabilities and
the market value of corporate equity in the non-financial corporate sector; Market Volatility is
the six-month moving average of monthly realized market volatility estimated from daily returns;
Idiosyncratic volatility is the six-month moving average of the average idiosyncratic realized stock
return volatility estimated from daily returns; Term spread is the 10-year minus 3-month treasury
yields; Price-earning ratio is the price-earning ratio of the S&P 500 index; Industrial production
is the growth rate of the industrial production index. All independent variables are normalized
to unit standard deviation, so reported coefficients are scaled to be interpreted as the percentage
yield spread change from a one-standard-deviation increase in the independent variable. Test
statistics are calculated using Hodrick’s (1992) standard error correction for overlapping data with
lag length equal to the number of months in each horizon. 1%, 5% and 10% statistical significance
are indicated by ***, **, and * respectively.
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Table 4: Predicting Future Defaults
Actual Default Actual Default Actual Default

1% Default 0.205***
(4.94)

2% Default 0.191***
(4.35)

5% Default 0.189***
(5.72)

Constant 0.844*** 0.845*** 0.847***
(27.04) (26.73) (26.59)

Observations 484 484 484
Adjusted R2 0.078 0.068 0.068

This table reports results from monthly predictive regressions where the dependent
variable is percentage of firms that default over the next year. The independent variables
are 1%, 2%, and 5% joint default probabilities, all normalized to have a zero mean and
unit standard deviation. Test statistics are calculated using the Hodrick (1992) standard
error correction for overlapping data with lag length equal to 12. 1%, 5%, and 10%
statistical significance are indicated by ***, **, and *, respectively.
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Table 5: Univariate Return Predictability

Panel A: 1% Joint Default Probabilities
1 M 6 M 12 M 24 M 36 M 60 M

S&P 500 -0.25 1.38 1.87 1.34 0.99 1.20
t-stat (-0.10) (0.66) (0.90) (0.69) (0.51) (0.52)
Adjusted R2 -0.002 0.001 0.010 0.009 0.006 0.008
CRSP Value-weighted 0.56 2.23 2.74 2.24 1.93 2.44
t-stat (0.23) (1.06) (1.31) (1.13) (0.96) (0.98)
Adjusted R2 -0.002 0.007 0.022 0.028 0.026 0.031
CRSP Equal-weighted 2.85 5.05** 5.39** 4.65*** 4.04*** 5.05***
t-stat (1.03) (2.18) (2.57) (2.81) (2.78) (3.02)
Adjusted R2 0.000 0.032 0.079 0.134 0.160 0.190
AAA 2.61** 2.19** 2.39** 2.58*** 2.63*** 2.82**
t-stat (2.28) (2.21) (2.29) (2.60) (2.75) (2.48)
Adjusted R2 0.008 0.035 0.071 0.141 0.193 0.179
BAA 3.56*** 4.19*** 4.66*** 4.46*** 4.11*** 4.41***
t-stat (3.04) (3.67) (3.96) (4.31) (4.25) (3.83)
Adjusted R2 0.00 0.101 0.193 0.308 0.354 0.320
BAA - AAA 0.95 2.00*** 2.27*** 1.89*** 1.48*** 1.58***
t-stat (1.56) (3.66) (4.60) (4.84) (4.34) (3.95)
Adjusted R2 0.003 0.092 0.220 0.320 0.326 0.303
Treasury Bonds 2.39* 1.67 1.65 1.98** 2.12** 2.32**
t-stat (1.95) (1.61) (1.58) (2.12) (2.51) (2.34)
Adjusted R2 0.006 0.017 0.032 0.089 0.157 0.154

Panel B: 2% Joint Default Probabilities
1 M 6 M 12 M 24 M 36 M 60 M

S&P 500 1.36 3.74* 3.74* 2.35 1.71 1.69
t-stat (0.56) (1.83) (1.91) (1.34) (1.01) (0.86)
Adjusted R2 -0.001 0.023 0.046 0.033 0.022 0.018
CRSP Value-weighted 2.02 4.44** 4.46** 3.04* 2.44 2.63
t-stat (0.84) (2.17) (2.26) (1.71) (1.39) (1.23)
Adjusted R2 -0.001 0.033 0.063 0.054 0.043 0.038
CRSP Equal-weighted 4.43 7.67*** 7.33*** 5.40*** 4.37*** 4.85***
t-stat (1.60) (3.42) (3.76) (3.61) (3.39) (3.21)
Adjusted R2 0.003 0.077 0.148 0.185 0.192 0.181
AAA 3.61*** 3.22*** 3.11*** 2.65*** 2.75*** 2.70***
t-stat (3.17) (3.40) (3.24) (3.02) (3.42) (2.83)
Adjusted R2 0.018 0.079 0.122 0.152 0.218 0.170
BAA 4.63*** 5.60*** 5.60*** 4.52*** 4.15*** 4.07***
t-stat (3.98) (5.26) (5.35) (5.00) (5.08) (4.06)
Adjusted R2 0.029 0.181 0.281 0.321 0.371 0.283
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BAA - AAA 1.02* 2.38*** 2.49*** 1.86*** 1.40*** 1.37***
t-stat (1.66) (4.53) (5.46) (5.23) (4.48) (3.66)
Adjusted R2 0.004 0.130 0.266 0.318 0.300 0.234
Treasury Bonds 3.15*** 2.44** 2.15** 1.99** 2.22*** 2.23***
t-stat (2.58) (2.42) (2.20) (2.35) (3.10) (2.67)
Adjusted R2 0.011 0.039 0.057 0.092 0.178 0.147

Panel C: 5% Joint Default Probabilities
1 M 6 M 12 M 24 M 36 M 60 M

S&P 500 5.08** 7.07*** 5.11*** 2.97** 2.05* 1.67
t-stat (2.11) (3.94) (3.27) (2.34) (1.79) (1.31)
Adjusted R2 0.007 0.088 0.087 0.055 0.033 0.018
CRSP Value-weighted 5.37** 7.38*** 5.40*** 3.22** 2.29* 1.95
t-stat (2.23) (4.11) (3.43) (2.48) (1.92) (1.38)
Adjusted R2 0.008 0.095 0.094 0.061 0.038 0.020
CRSP Equal-weighted 8.56*** 11.27*** 8.21*** 5.36*** 3.94*** 3.63***
t-stat (3.12) (5.81) (5.24) (4.74) (4.21) (3.22)
Adjusted R2 0.017 0.169 0.188 0.184 0.159 0.103
AAA 2.82** 2.52*** 2.02** 1.38** 1.63*** 1.11
t-stat (2.46) (2.89) (2.48) (2.00) (2.74) (1.58)
Adjusted R2 0.010 0.048 0.051 0.040 0.077 0.027
BAA 3.97*** 5.36*** 4.38*** 2.89*** 2.71*** 2.01**
t-stat (3.40) (5.60) (4.86) (3.78) (4.12) (2.50)
Adjusted R2 0.021 0.166 0.172 0.131 0.160 0.069
BAA - AAA 1.15* 2.84*** 2.36*** 1.51*** 1.08*** 0.91***
t-stat (1.88) (6.26) (6.23) (5.14) (4.48) (3.20)
Adjusted R2 0.005 0.187 0.240 0.209 0.180 0.104
Treasury Bonds 2.67** 1.53 1.12 0.89 1.36** 0.91
t-stat (2.18) (1.64) (1.36) (1.33) (2.57) (1.49)
Adjusted R2 0.007 0.014 0.014 0.017 0.067 0.023
Controls N N N N N N
Observations 496 496 490 478 466 454

The table reports results from univariate monthly predictive regressions using S&P 500, CRSP
value-weighted, CRSP equal-weighted, BAA corporate bond, and long-term Treasury index excess
returns and BAA-AAA corporate bond returns over one-month, six-month and one-year to
five-year horizons. Panels A to C adopt 1%, 2%, and 5% joint default probabilities as the predictor
variables, respectively. Predictor variables are normalized to have unit standard deviation, so
reported coefficients are scaled to interpreted as the percentage change in annualized expected
market returns from a one-standard-deviation increase in the predictor variable. Test-statistics are
calculated using Hodrick’s (1992) standard error correction for overlapping data with lag length
equal to the number of months in each horizon. 1%, 5% and 10% statistical significance are
indicated by ***, **, and * respectively.
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Table 6: Equity Return Predictability

Panel A: S&P 500 Returns
1 M 6 M 12 M 24 M 36 M 60 M

2% joint default 3.23 4.03 5.20** 3.41** 2.42* 1.49
(0.92) (1.63) (2.51) (2.05) (1.84) (0.89)

Book-to-Market -43.55*** -30.20*** -20.41*** -18.06*** -25.75*** -27.52***
(-3.45) (-3.40) (-2.67) (-2.79) (-4.80) (-4.18)

Default Return Spread 6.94** 2.03** 0.55 0.17 -0.12 -0.12
(2.57) (2.09) (0.86) (0.37) (-0.33) (-0.26)

Default Yield Spread 4.07 4.35 1.14 -0.75 1.01 0.54
(0.93) (1.47) (0.46) (-0.38) (0.64) (0.28)

Dividend Payout Ratio 4.18 5.03* 4.66** 4.29** 2.30* 1.83
(0.96) (1.67) (1.99) (2.48) (1.80) (1.15)

Dividend Price Ratio 23.80 9.42 0.65 3.15 11.12* 18.13**
(1.60) (0.90) (0.07) (0.43) (1.86) (2.49)

Earnings Price Ratio 29.19*** 26.25*** 24.59*** 17.86*** 15.96*** 10.18*
(2.90) (3.54) (3.86) (3.44) (3.84) (1.91)

Inflation -3.39 -1.50 -3.62*** -1.69** -0.48 -0.50
(-1.03) (-0.97) (-3.29) (-2.02) (-0.71) (-0.60)

Long Term Return 7.14*** 2.80** 1.10 0.41 0.65* 0.21
(2.64) (2.54) (1.51) (0.83) (1.65) (0.45)

Long Term Yield -12.22** -8.49** -4.47 -2.35 -2.04 -1.22
(-2.41) (-2.31) (-1.40) (-0.87) (-0.87) (-0.42)

Net Equity Expansion 4.31 5.63** 3.97** 2.73* 3.70*** 3.47**
(1.45) (2.55) (2.07) (1.70) (2.78) (2.19)

Stock Variance -8.71*** -0.49 0.59 1.07 0.03 -0.13
(-3.14) (-0.36) (0.60) (1.53) (0.06) (-0.20)

Term Spread 2.96 2.15 3.59* 3.93*** 4.52*** 3.45**
(0.93) (0.95) (1.91) (2.59) (3.73) (2.19)

KJ Tail Risk -0.34 6.08** 6.97*** 4.84** 2.33 0.81
(-0.07) (1.98) (2.80) (2.45) (1.51) (0.43)

Observations 496 496 490 478 466 454
Adjusted R2 0.070 0.232 0.375 0.430 0.567 0.484

Panel B: CRSP Value-weighted Returns
2% joint default 3.33 4.13* 5.32** 3.39** 2.26* 1.20

(0.95) (1.66) (2.54) (2.00) (1.67) (0.66)

Book-to-Market -44.05*** -30.48*** -20.66*** -18.49*** -26.90*** -29.47***
(-3.49) (-3.42) (-2.68) (-2.80) (-4.86) (-4.15)

Default Return Spread 7.06*** 2.05** 0.56 0.17 -0.14 -0.14
(2.62) (2.10) (0.87) (0.37) (-0.37) (-0.28)

Default Yield Spread 4.05 4.35 1.06 -0.84 1.18 0.66
(0.93) (1.46) (0.42) (-0.41) (0.72) (0.31)
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Dividend Payout Ratio 3.87 4.88 4.66** 4.37** 2.32* 1.96
(0.89) (1.62) (1.97) (2.47) (1.75) (1.12)

Dividend Price Ratio 25.61* 10.67 1.62 4.48 13.21** 21.59***
(1.72) (1.02) (0.18) (0.60) (2.14) (2.74)

Earnings Price Ratio 29.10*** 26.54*** 25.25*** 18.59*** 16.86*** 11.06*
(2.89) (3.57) (3.94) (3.50) (3.93) (1.91)

Inflation -3.35 -1.46 -3.65*** -1.75** -0.48 -0.55
(-1.02) (-0.94) (-3.29) (-2.04) (-0.68) (-0.61)

Long Term Return 7.16*** 2.83** 1.12 0.38 0.62 0.15
(2.65) (2.56) (1.52) (0.75) (1.53) (0.28)

Long Term Yield -12.20** -8.40** -4.28 -2.16 -1.96 -0.88
(-2.40) (-2.28) (-1.33) (-0.78) (-0.81) (-0.28)

Net Equity Expansion 4.22 5.62** 3.99** 2.85* 4.00*** 3.97**
(1.42) (2.54) (2.06) (1.73) (2.92) (2.31)

Stock Variance -8.72*** -0.48 0.60 1.12 -0.01 -0.13
(-3.15) (-0.35) (0.62) (1.56) (-0.01) (-0.18)

Term Spread 3.05 2.21 3.69* 3.99** 4.67*** 3.58**
(0.95) (0.98) (1.94) (2.56) (3.73) (2.09)

KJ Tail Risk -0.74 6.05** 7.02*** 4.89** 2.36 0.74
(-0.15) (1.97) (2.80) (2.41) (1.48) (0.36)

Observations 496 496 492 480 468 456
Adjusted R2 0.071 0.237 0.384 0.433 0.575 0.486

Panel C: CRSP Equal-weighted Returns
2% joint default 4.60 6.67** 7.72*** 4.97*** 3.63*** 2.60

(1.15) (2.37) (3.48) (3.10) (3.01) (1.63)

Book-to-Market -42.65*** -25.67** -14.75* -7.34 -13.47*** -9.67*
(-2.96) (-2.55) (-1.81) (-1.21) (-2.86) (-1.65)

Default Return Spread 8.15*** 2.62** 0.72 -0.07 -0.29 -0.41
(2.64) (2.32) (1.03) (-0.15) (-0.83) (-0.88)

Default Yield Spread 6.12 5.23 1.67 -0.32 1.51 0.05
(1.22) (1.55) (0.63) (-0.17) (1.04) (0.03)

Dividend Payout Ratio 6.09 5.24 5.07** 4.38** 1.78 2.91*
(1.22) (1.53) (2.00) (2.54) (1.44) (1.77)

Dividend Price Ratio 23.92 10.15 -0.84 0.06 6.83 8.99
(1.40) (0.85) (-0.09) (0.01) (1.28) (1.36)

Earnings Price Ratio 30.77*** 23.97*** 22.99*** 12.45** 10.36*** 4.48
(2.67) (2.85) (3.39) (2.50) (2.75) (0.89)

Inflation -2.80 -1.18 -3.13*** -0.85 0.40 0.50
(-0.75) (-0.66) (-2.63) (-1.04) (0.63) (0.62)

Long Term Return 10.40*** 3.76*** 1.83** 0.35 0.57 -0.20
(3.36) (2.96) (2.30) (0.69) (1.50) (-0.39)

Long Term Yield -14.85** -11.04*** -5.73* -3.28 -2.88 -0.60
(-2.56) (-2.65) (-1.69) (-1.28) (-1.39) (-0.23)
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Net Equity Expansion 5.81* 6.94*** 4.58** 2.67* 3.40*** 2.72*
(1.71) (2.77) (2.25) (1.76) (2.90) (1.91)

Stock Variance -8.99*** 0.69 1.19 1.68** 0.50 0.97
(-2.84) (0.44) (1.12) (2.41) (0.98) (1.44)

Term Spread 2.92 2.05 4.84** 3.98*** 3.94*** 2.28
(0.80) (0.80) (2.40) (2.72) (3.57) (1.52)

KJ Tail Risk -1.94 4.27 3.78 2.74 1.44 0.68
(-0.34) (1.22) (1.42) (1.42) (0.99) (0.37)

Observations 496 496 490 478 466 454
Adjusted R2 0.072 0.238 0.386 0.425 0.513 0.390

The table reports results from multivariate monthly predictive regressions using S&P 500, CRSP
value-weighted, and CRSP equal-weighted market index returns over one-month, six-month and
one-year to five-year horizons. The predictor variables are the 2% joint default probability,
predictors studied in survey by Welch and Goyal (2008), and the tail risk measure (Kelly and Jiang,
2014). Predictor variables are normalized to have unit standard deviation, so reported coefficients
are scaled to interpreted as the percentage change in annualized expected market returns from a one-
standard-deviation increase in the predictor variable. Test statistics are calculated using Hodrick’s
(1992) standard error correction for overlapping data with lag length equal to the number of months
in each horizon. 1%, 5% and 10% statistical significance are indicated by ***, **, and * respectively.
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Table 7: Bond Return Predictability

Panel A: AAA Excess Returns
1 M 6 M 12 M 24 M 36 M 60 M

2% joint default 6.01*** 5.98*** 5.25*** 3.54*** 3.22*** 2.48***
(3.65) (5.89) (6.34) (4.61) (5.25) (3.70)

Book-to-Market 10.13* 11.04*** 8.16*** 0.72 -1.93 -4.04
(1.71) (3.04) (2.69) (0.25) (-0.80) (-1.54)

Default Return Spread 0.81 -0.35 -0.27 -0.27 -0.25 -0.25
(0.64) (-0.83) (-0.98) (-1.29) (-1.48) (-1.27)

Default Yield Spread -5.35*** -3.98*** -2.55** 0.56 0.81 1.80**
(-2.60) (-3.26) (-2.57) (0.61) (1.11) (2.27)

Dividend Payout Ratio 2.92 3.48*** 3.26*** 0.84 0.68 -0.29
(1.42) (2.80) (3.41) (1.02) (1.09) (-0.42)

Dividend Price Ratio -22.28*** -24.05*** -21.78*** -10.66*** -6.83** -3.04
(-3.18) (-5.60) (-6.17) (-3.21) (-2.50) (-1.02)

Earnings Price Ratio 9.73** 7.90*** 7.72*** 2.97 2.01 -0.63
(2.05) (2.61) (3.06) (1.25) (1.05) (-0.29)

Inflation -2.10 -1.13* -1.28*** -0.36 0.03 0.00
(-1.36) (-1.72) (-2.78) (-0.92) (0.10) (0.01)

Long Term Return 3.37*** 0.46 0.62** 0.05 0.21 -0.13
(2.65) (0.97) (1.99) (0.23) (1.10) (-0.65)

Long Term Yield 7.50*** 8.61*** 8.78*** 6.94*** 6.47*** 7.43***
(3.14) (5.73) (6.96) (5.70) (6.07) (6.32)

Net Equity Expansion -2.05 -2.34*** -1.68** -0.44 -0.55 -0.24
(-1.47) (-2.61) (-2.22) (-0.61) (-0.91) (-0.37)

Stock Variance 4.24*** 0.71 0.46 0.08 0.00 -0.09
(3.26) (1.23) (1.13) (0.26) (0.01) (-0.31)

Term Spread 5.67*** 5.82*** 5.07*** 2.24*** 1.15** -0.41
(3.77) (6.29) (6.73) (3.20) (2.05) (-0.65)

KJ Tail Risk 4.93** 3.59*** 2.79*** 0.36 -0.68 -1.57**
(2.13) (2.83) (2.78) (0.39) (-0.93) (-2.00)

Observations 496 496 490 478 466 454
Adjusted R2 0.092 0.388 0.566 0.567 0.662 0.685

Panel B: BAA Excess Returns
2% joint default 4.86*** 6.09*** 6.18*** 4.33*** 3.74*** 2.85***

(2.95) (5.37) (6.73) (4.95) (4.89) (3.18)

Book-to-Market 5.25 6.26 4.36 -0.49 -3.15 -4.35
(0.89) (1.54) (1.31) (-0.15) (-1.04) (-1.24)

Default Return Spread 4.81*** 0.32 -0.31 -0.48** -0.38* -0.51**
(3.79) (0.68) (-1.03) (-1.96) (-1.84) (-1.99)

Default Yield Spread -0.93 -0.08 0.58 2.28** 2.30** 2.92***
(-0.45) (-0.06) (0.53) (2.17) (2.52) (2.76)
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Dividend Payout Ratio 6.55*** 5.07*** 3.22*** 0.41 0.17 -0.65
(3.20) (3.65) (3.01) (0.42) (0.22) (-0.71)

Dividend Price Ratio -21.08*** -19.93*** -17.51*** -7.52** -4.18 -0.44
(-3.01) (-4.15) (-4.49) (-1.99) (-1.23) (-0.11)

Earnings Price Ratio 14.06*** 10.57*** 8.92*** 2.49 1.89 -1.55
(2.97) (3.13) (3.20) (0.92) (0.79) (-0.54)

Inflation -3.02* -2.43*** -1.81*** -0.15 0.37 0.41
(-1.96) (-3.31) (-3.54) (-0.34) (0.96) (0.92)

Long Term Return 5.71*** 0.80 0.45 -0.03 0.13 -0.36
(4.49) (1.51) (1.30) (-0.12) (0.58) (-1.32)

Long Term Yield 5.23** 5.29*** 5.71*** 4.63*** 4.39*** 5.63***
(2.19) (3.16) (4.11) (3.35) (3.30) (3.59)

Net Equity Expansion 0.32 0.11 -0.32 -0.28 -0.63 -0.63
(0.23) (0.11) (-0.39) (-0.34) (-0.83) (-0.74)

Stock Variance 1.87 1.41** 1.17** 0.45 0.07 0.00
(1.44) (2.18) (2.58) (1.17) (0.22) (0.01)

Term Spread 5.00*** 5.14*** 5.21*** 2.48*** 1.06 -0.95
(3.33) (4.97) (6.24) (3.11) (1.51) (-1.14)

KJ Tail Risk 5.38** 4.31*** 3.13*** 0.06 -1.09 -2.24**
(2.32) (3.04) (2.81) (0.06) (-1.20) (-2.16)

Observations 496 496 490 478 466 454
Adjusted R2 0.138 0.432 0.620 0.579 0.622 0.602

Panel C: BAA-AAA Return Spreads
2% joint default -1.15 0.11 0.93** 0.80** 0.52* 0.37

(-1.43) (0.22) (2.44) (2.57) (1.85) (1.07)

Book-to-Market -4.88* -4.78*** -3.80*** -1.21 -1.22 -0.31
(-1.69) (-2.73) (-2.78) (-1.09) (-1.18) (-0.25)

Default Return Spread 4.00*** 0.67*** -0.05 -0.21** -0.13* -0.26**
(6.45) (3.18) (-0.34) (-2.19) (-1.65) (-2.51)

Default Yield Spread 4.42*** 3.91*** 3.13*** 1.71*** 1.49*** 1.11***
(4.40) (6.64) (6.90) (4.63) (4.42) (2.68)

Dividend Payout Ratio 3.63*** 1.60*** -0.04 -0.43 -0.51* -0.36
(3.62) (2.67) (-0.10) (-1.22) (-1.75) (-0.99)

Dividend Price Ratio 1.20 4.12** 4.27*** 3.14** 2.66** 2.61*
(0.35) (1.99) (2.66) (2.40) (2.23) (1.81)

Earnings Price Ratio 4.32* 2.67* 1.21 -0.47 -0.12 -0.92
(1.87) (1.83) (1.05) (-0.50) (-0.14) (-0.83)

Inflation -0.92 -1.29*** -0.53** 0.21 0.34** 0.41**
(-1.22) (-4.02) (-2.42) (1.26) (2.36) (2.29)

Long Term Return 2.35*** 0.34 -0.17 -0.09 -0.07 -0.23**
(3.78) (1.44) (-1.12) (-0.82) (-0.83) (-2.09)

Long Term Yield -2.27* -3.32*** -3.07*** -2.32*** -2.08*** -1.80***
(-1.95) (-4.59) (-5.38) (-4.90) (-4.57) (-3.25)
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Net Equity Expansion 2.37*** 2.45*** 1.36*** 0.16 -0.08 -0.40
(3.47) (5.67) (3.97) (0.57) (-0.31) (-1.28)

Stock Variance -2.37*** 0.70** 0.71*** 0.37** 0.07 0.09
(-3.73) (2.48) (3.67) (2.52) (0.55) (0.62)

Term Spread -0.66 -0.68 0.13 0.25 -0.10 -0.54*
(-0.90) (-1.53) (0.39) (0.89) (-0.38) (-1.67)

KJ Tail Risk 0.45 0.71 0.34 -0.30 -0.42 -0.67
(0.40) (1.16) (0.73) (-0.79) (-1.20) (-1.59)

Observations 496 496 490 478 466 454
Adjusted R2 0.237 0.552 0.658 0.639 0.618 0.536

Panel D: Treasury Bonds
2% joint default 5.59*** 5.11*** 4.16*** 3.04*** 2.85*** 2.29***

(3.13) (4.41) (4.33) (3.60) (4.49) (3.34)

Book-to-Market 14.09** 12.44*** 7.99** -0.85 -3.13 -5.20*
(2.19) (3.00) (2.27) (-0.27) (-1.25) (-1.88)

Default Return Spread 1.07 -0.57 -0.32 -0.16 -0.15 -0.08
(0.78) (-1.21) (-1.04) (-0.70) (-0.89) (-0.42)

Default Yield Spread -5.96*** -4.39*** -2.91** 0.03 0.35 1.34*
(-2.67) (-3.15) (-2.53) (0.03) (0.45) (1.65)

Dividend Payout Ratio 1.40 2.56* 2.92*** 0.84 0.60 -0.26
(0.63) (1.81) (2.64) (0.93) (0.94) (-0.37)

Dividend Price Ratio -22.03*** -24.12*** -20.88*** -9.22** -4.62 -1.73
(-2.90) (-4.91) (-5.09) (-2.52) (-1.63) (-0.55)

Earnings Price Ratio 5.47 6.25* 7.14** 4.04 2.49 1.03
(1.06) (1.80) (2.43) (1.54) (1.25) (0.47)

Inflation -1.69 0.05 -0.35 -0.17 0.04 -0.16
(-1.01) (0.07) (-0.68) (-0.40) (0.12) (-0.46)

Long Term Return 2.66* 0.24 0.62* -0.11 -0.07 -0.30
(1.93) (0.46) (1.75) (-0.42) (-0.39) (-1.44)

Long Term Yield 7.58*** 8.95*** 8.77*** 6.21*** 4.80*** 5.45***
(2.93) (5.21) (5.98) (4.62) (4.35) (4.38)

Net Equity Expansion -3.47** -3.70*** -2.61*** -0.78 -0.82 -0.56
(-2.28) (-3.59) (-2.97) (-0.98) (-1.31) (-0.83)

Stock Variance 4.04*** 0.81 0.26 0.01 -0.19 -0.23
(2.86) (1.25) (0.56) (0.02) (-0.72) (-0.80)

Term Spread 5.11*** 5.69*** 4.91*** 1.98** 0.81 -0.36
(3.13) (5.38) (5.62) (2.57) (1.40) (-0.56)

KJ Tail Risk 5.39** 3.95*** 2.81** 0.56 -0.31 -0.95
(2.14) (2.73) (2.43) (0.55) (-0.41) (-1.20)

Observations 496 496 490 478 466 454
Adjusted R2 0.067 0.321 0.457 0.447 0.561 0.585

The table reports results from multivariate monthly predictive regressions using AAA corporate
bond, BAA corporate bond, and long term Treasury index excess returns and BAA-AAA cor-
porate bond returns over one-month, six-month and one-year to five-year horizons. The predictor
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variables are the 2% joint default probability, predictors studied in survey by Welch and Goyal
(2008), and the tail risk measure (Kelly and Jiang, 2014). Predictor variables are normalized to
have unit standard deviation, so reported coefficients are scaled to interpreted as the percentage
change in annualized expected market returns from a one-standard-deviation increase in the
predictor variable. Test statistics are calculated using Hodrick’s (1992) standard error correction
for overlapping data with lag length equal to the number of months in each horizon. 1%, 5% and
10% statistical significance are indicated by ***, **, and * respectively.
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Table 8: Alternative Default Measures

Panel A: S&P 500 With only Non-Financials
1 M 6 M 12 M 24 M 36 M 60 M

S&P 500 5.84** 5.40*** 4.67*** 2.22 1.13 0.07
t-stat (2.08) (2.73) (2.80) (1.62) (1.04) (0.05)
Adjusted R2 0.077 0.256 0.386 0.419 0.553 0.477
CRSP Value-weighted 5.85** 5.45*** 4.74*** 2.14 0.95 -0.34
t-stat (2.08) (2.74) (2.81) (1.53) (0.84) (-0.23)
Adjusted R2 0.077 0.260 0.394 0.421 0.562 0.482
CRSP Equal-weighted 7.60** 8.01*** 6.94*** 3.82*** 2.64*** 1.22
t-stat (2.37) (3.59) (3.95) (2.92) (2.68) (0.95)
Adjusted R2 0.080 0.271 0.405 0.419 0.503 0.375
AAA 4.59*** 3.56*** 3.29*** 2.17*** 1.94*** 0.98
t-stat (3.46) (4.13) (4.48) (3.25) (3.54) (1.63)
Adjusted R2 0.089 0.332 0.505 0.516 0.603 0.636
BAA 4.14*** 4.26*** 3.90*** 2.75*** 2.36*** 1.23
t-stat (3.13) (4.57) (4.83) (3.61) (3.54) (1.58)
Adjusted R2 0.140 0.409 0.562 0.529 0.570 0.557
BAA - AAA -0.45 0.70* 0.61** 0.58** 0.42* 0.25
t-stat (-0.69) (1.77) (1.97) (2.28) (1.85) (0.88)
Adjusted R2 0.235 0.559 0.653 0.635 0.618 0.534
Treasury Bonds 3.50** 2.47** 2.50*** 1.84** 1.64*** 0.78
t-stat (2.43) (2.52) (3.04) (2.56) (2.93) (1.27)
Adjusted R2 0.059 0.269 0.414 0.405 0.497 0.527

Panel B: CRSP Above NYSE Median Firms (with Financials)
1 M 6 M 12 M 24 M 36 M 60 M

S&P 500 3.58 4.23* 5.15*** 3.59*** 2.55** 2.34*
t-stat (1.08) (1.90) (2.88) (2.61) (2.40) (1.81)
Adjusted R2 0.070 0.235 0.379 0.437 0.572 0.496
CRSP Value-weighted 3.67 4.32* 5.27*** 3.61** 2.47** 2.29
t-stat (1.10) (1.94) (2.93) (2.56) (2.25) (1.62)
Adjusted R2 0.071 0.240 0.388 0.441 0.580 0.497
CRSP Equal-weighted 4.74 6.55*** 7.24*** 4.70*** 3.05*** 2.87**
t-stat (1.25) (2.58) (3.76) (3.47) (2.99) (2.23)
Adjusted R2 0.071 0.240 0.384 0.424 0.500 0.398
AAA 6.37*** 6.42*** 5.53*** 3.04*** 2.51*** 2.09***
t-stat (4.09) (7.35) (8.23) (4.53) (4.62) (3.70)
Adjusted R2 0.097 0.422 0.601 0.545 0.619 0.671
BAA 5.25*** 6.45*** 6.21*** 3.69*** 2.97*** 2.45***
t-stat (3.37) (6.49) (8.10) (4.77) (4.49) (3.29)
Adjusted R2 0.141 0.456 0.638 0.552 0.582 0.590
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BAA - AAA -1.12 0.04 0.68** 0.65** 0.46** 0.36
t-stat (-1.46) (0.08) (2.02) (2.38) (1.96) (1.25)
Adjusted R2 0.237 0.552 0.652 0.632 0.616 0.536
Treasury Bonds 6.28*** 5.62*** 4.53*** 2.53*** 2.08*** 1.92***
t-stat (3.72) (5.58) (5.69) (3.43) (3.72) (3.36)
Adjusted R2 0.073 0.348 0.487 0.424 0.507 0.569

Panel C: CRSP Above NYSE Median Firms (with Only Non-Financials)
1 M 6 M 12 M 24 M 36 M 60 M

S& P 500 8.78*** 6.73*** 5.75*** 2.86** 1.67 1.14
t-stat (3.17) (3.57) (3.63) (2.11) (1.50) (0.85)
Adjusted R2 0.086 0.276 0.413 0.434 0.562 0.483
CRSP Value-weighted 8.73*** 6.73*** 5.78*** 2.77** 1.50 0.82
t-stat (3.15) (3.55) (3.62) (2.00) (1.30) (0.56)
Adjusted R2 0.087 0.279 0.419 0.435 0.569 0.485
CRSP Equal-weighted 10.47*** 8.74*** 7.02*** 3.45*** 2.18** 1.30
t-stat (3.30) (4.08) (4.11) (2.61) (2.12) (1.02)
Adjusted R2 0.088 0.283 0.408 0.408 0.487 0.376
AAA 5.03*** 3.31*** 3.04*** 2.37*** 1.56*** 0.86
t-stat (3.83) (3.90) (4.14) (3.54) (2.66) (1.38)
Adjusted R2 0.093 0.323 0.492 0.531 0.577 0.632
BAA 5.67*** 4.81*** 4.36*** 3.34*** 2.22*** 1.25
t-stat (4.35) (5.43) (5.76) (4.58) (3.21) (1.58)
Adjusted R2 0.153 0.430 0.586 0.570 0.561 0.557
BAA - AAA 0.64 1.50*** 1.32*** 0.98*** 0.66*** 0.39
t-stat (1.00) (4.09) (4.90) (4.31) (3.02) (1.42)
Adjusted R2 0.235 0.588 0.694 0.674 0.646 0.541
Treasury Bonds 2.84** 1.72* 1.84** 1.55** 0.75 0.20
t-stat (1.98) (1.79) (2.21) (2.08) (1.23) (0.32)
Adjusted R2 0.055 0.254 0.390 0.389 0.443 0.515
Controls Y Y Y Y Y Y
Observations 496 496 490 478 466 454

The table reports results from multivariate monthly predictive regressions using S&P 500, CRSP
value-weighted, CRSP equal-weighted, AAA corporate bond, BAA corporate bond, and long-term
Treasury index excess returns and BAA-AAA corporate bond returns over one-month, six-month
and one-year to five-year horizons, using alternative systemic default measures. Panel A to C
use the 2% joint default probability estimated from S&P 500 with only non-financials, CRSP
above NYSE median-size firms with financials and with only non-financials, respectively. All
predictive regressions control for predictors studied in survey by Welch and Goyal (2008), and the
tail risk measure (Kelly and Jiang, 2014). Predictor variables are normalized to have unit standard
deviation, so reported coefficients are scaled to interpreted as the percentage change in annualized
expected market returns from a one-standard-deviation increase in the predictor variable. Test
statistics are calculated using Hodrick’s (1992) standard error correction for overlapping data with
lag length equal to the number of months in each horizon. 1%, 5% and 10% statistical significance
are indicated by ***, **, and * respectively.
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Table 9: Out-of-sample Tests (%)

1% Joint Default Probabilities
1M 6M 12M 24M 36M 60M

S&P 500 -1.0 -7.9 -11.1 -12.8 -14.2 -7.7
CRSP Value-weighted -1.1 -7.7 -10.2 -10.3 -9.1 2.5*
CRSP Equal-weighted -1.1 -4.9 -1.5* 5.3* 15.9* 30.1*
AAA -6.4 -21.1 -59.0 -85.0* -102.5* -169.4*
BAA -1.3* 1.0* -2.9* 6.3* 8.1* -4.5*
BAA - AAA 0.0 7.6* 21.9* 33.7* 37.1* 31.5*
Treasury Bonds -2.3 -7.2 -28.9 -53.1* -60.0* -133.2*

2% Joint Default Probabilities
S&P 500 -1.0 -5.5 -6.0 -4.5 -2.8 4.6
CRSP Value-weighted -0.9 -4.6 -4.5 -1.9 0.9* 9.5*
CRSP Equal-weighted -0.6 0.5* 6.1* 12.5* 19.0* 25.9*
AAA -6.2 -23.6 -49.5 -39.8* -37.4* -63.2*
BAA 1.0 12.9* 18.0* 32.9* 34.3* 26.1*
BAA - AAA -0.1 10.2 26.6* 33.9* 33.6* 25.8*
Treasury Bonds -2.1 -10.3 -28.0 -31.0* -26.0* -60.4*

5% Joint Default Probabilities
S&P 500 -0.3 4.5* 3.6* 3.0* 3.2* 2.8*
CRSP Value-weighted -0.1 5.1* 4.3* 4.2* 4.1* 3.5*
CRSP Equal-weighted 1.3* 15.0* 16.8* 17.6* 16.4* 14.1*
AAA -5.1 -20.1* -25.7* -13.2* -9.6* -5.7*
BAA 2.0* 27.3* 26.5* 25.4* 24.4* 18.1*
BAA - AAA -0.7 14.3* 25.3* 24.3* 21.9* 14.1*
Treasury Bonds -1.9 -13.8 -18.9 -16.0 -12.7* -10.6*

The table reports the out-of-sample forecasting R̄2 in percent from predictive regressions using
S&P 500, CRSP value-weighted, CRSP equal-weighted, AAA corporate bond, BAA corporate
bond, and long-term Treasury index excess returns and BAA-AAA corporate bond returns over
one-month, six-month and one-year to five-year horizons. Panels A to C use 1%, 2%, and 5%
joint default probabilities as the predictor variables. In each month t (beginning at t=240 to
allow for a sufficiently large initial estimation period), we estimate rolling univariate forecasting
regressions of monthly index returns on the estimated joint default series. Predictive coefficient
estimates only use data through date t, and are then used to forecast returns at t+1. A negative
R̄2 implies that the predictor performs worse than setting forecasts equal to the sample mean. An
asterisk(*) beside an estimate denotes that it is statistically significant at the 5% level or better
based on the Clark and McCracken (2001) ENC-NEW test of out-of-sample predictability.
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Table 10: Univariate Industry Return Predictability

Panel A: Industry Value-weighted Returns
1M 6M 12M 24M 36M 60M

Non-Durables 11.22*** 16.88*** 16.35*** 12.88*** 10.95*** 18.85***
(2.77) (6.65) (5.95) (5.80) (4.33) (4.65)

Durables -2.78 3.23 4.45 5.11*** 2.47 1.22
(0.65) (0.97) (1.62) (2.59) (1.49) (0.83)

Manufacturing 6.32* 13.42*** 13.13*** 10.58*** 8.86*** 10.95***
(1.88) (6.65) (5.84) (4.19) (7.31) (7.56)

Energy 1.17 1.11 0.28 -0.29 -1.13 -0.22
(0.45) (0.55) (0.15) (-0.20) (-0.84) (-0.22)

Chemicals 0.13 0.67 -0.43 -0.12 0.36 -0.78**
(0.09) (1.02) (-1.08) (-0.36) (1.42) (-2.12)

Business equipment 4.62 5.10* 4.85 2.24 0.36 0.66
(1.16) (1.65) (1.51) (0.81) (0.15) (0.28)

Telecom -1.57 -2.15 -1.04 -0.49 -0.80 -1.95**
(-0.53) (-0.91) (-0.49) (-0.28) (-0.57) (-2.32)

Utilities 1.39 3.75*** 4.44*** 4.81*** 4.75*** 3.07***
(0.62) (3.43) (5.07) (7.90) (8.69) (10.05)

Shops 15.93*** 22.04*** 23.23*** 15.57*** 13.74*** 12.34***
(3.97) (7.04) (8.99) (7.93) (6.50) (6.46)

Health -0.63 2.46 3.48 2.14 0.67 -0.45
(-0.18) (0.88) (1.26) (0.77) (0.23) (-0.40)

Finance -0.56 1.94 2.26* 1.94 1.85 3.15***
(-0.23) (1.50) (1.87) (1.48) (1.58) (3.05)

Other 0.92 4.12*** 4.86*** 3.99*** 3.83*** 3.87***
(0.46) (3.67) (4.49) (4.13) (5.11) (9.22)

Average coefficient 3.01 6.05 6.32 4.86 3.83 4.23

Mean test, χ2 4.90** 53.14*** 56.53*** 34.61*** 21.78*** 21.44***
Mean test, p-value (0.027) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint test, χ2 25.31** 122.24*** 245.22*** 263.93*** 1218.16*** 1263.56***
Joint test, p-value (0.013) (0.000) (0.000) (0.000) (0.000) (0.000)

Obs Per Industry 453 448 442 430 418 394

Panel B: Industry Equal-weighted Returns
1M 6M 12M 24M 36M 60M

Non-Durables 12.79** 35.26*** 35.97*** 26.45*** 19.14*** 21.68***
(2.41) (12.49) (10.65) (9.93) (9.40) (5.41)

Durables -0.27 8.37*** 10.97*** 9.27*** 5.90*** 3.76***
(-0.08) (3.42) (4.21) (3.88) (3.78) (3.94)

Manufacturing 6.18** 22.40*** 23.11*** 19.12*** 14.49*** 11.99***
(2.05) (8.64) (7.83) (6.72) (8.30) (11.11)

Energy -4.61 -4.27 -4.73 -4.86* -5.88*** -3.12
(-1.28) (-1.11) (-1.38) (-1.88) (-2.61) (-1.30)
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Chemicals 1.91 3.29*** 1.24** 0.84* 1.02*** -0.78**
(0.68) (2.61) (2.06) (1.69) (3.02) (-2.10)

Business equipment 9.56** 18.39*** 19.66*** 17.08*** 13.17*** 10.81***
(2.38) (4.39) (5.40) (6.46) (6.44) (4.27)

Telecom -4.91 -3.92 -1.59 -1.31 -2.62* -4.44***
(-1.19) (-1.24) (-0.65) (-0.81) (-1.87) (-4.19)

Utilities 2.11 4.26*** 4.57*** 4.17*** 3.97*** 1.81***
(1.17) (4.18) (7.19) (9.20) (8.65) (3.94)

Shops 13.64*** 31.66*** 34.48*** 24.36*** 18.53*** 9.81***
(3.40) (6.05) (6.77) (7.08) (7.28) (5.63)

Health 5.06 14.81*** 17.98*** 14.86*** 12.28*** 9.24***
(1.40) (3.24) (3.19) (4.29) (6.35) (5.23)

Finance -2.01 1.59 2.41 2.48 2.53 3.07**
(-1.08) (0.99) (1.56) (1.51) (1.57) (2.42)

Other 4.36** 11.46*** 13.11*** 10.11*** 8.11*** 5.91***
(2.42) (6.09) (7.71) (9.25) (12.84) (10.93)

Average coefficient 3.65 11.94 13.10 10.21 7.55 5.81

Mean test, χ2 6.46** 82.60*** 87.71*** 101.00*** 142.44*** 130.05***
Mean test, p-value (0.011) (0.000) (0.000) (0.000) (0.000) (0.000)

Joint test, χ2 26.20*** 213.04*** 172.42*** 276.53*** 490.05*** 2218.65***
Joint test, p-value (0.010) (0.000) (0.000) (0.000) (0.000) (0.000)

Obs Per Industry 453 448 442 430 418 394

The table reports estimates of rit =ai+bipi,t−1+εit,i=1,...,12. in a joint GMM estimation. rit
represents Fama-French 12 industry equity returns (at different horizons), either value-weighted
(Panel A) or equal-weighted (Panel B) and pi,t−1 is the probability that at least 2% of an industry’s
above median firms will default in the next year, estimated as of the end of the month before
the returns period. t-statistics in parentheses are based on a Newey-West spectral density matrix
that allows for both autocorrelation and cross-correlation across GMM moment conditions. The
bottom of each panel reports the average bi and also Wald tests for whether the average bi is zero
and whether all of the bi’s are jointly equal to zero. 1%, 5%, and 10% statistical significance are
indicated by ***, **, and * respectively.
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Table 11: Bivariate Industry Return Predictability

Panel A: Industry Value-weighted Returns
1M 6M 12M 24M 36M 60M

Non-Durables
Industry default 5.01 5.52 0.13 -1.37 -2.80 -7.62***

(0.70) (1.24) (0.04) (-0.39) (-0.77) (-2.73)
Systemic default 2.14 3.91 5.58*** 4.91*** 4.75*** 6.76***

(0.71) (1.46) (3.83) (3.39) (3.38) (6.01)
Durables

Industry default -7.43 -3.56 -1.94 -0.30 -1.80 -1.21
(-1.33) (-0.77) (-0.51) (-0.09) (-0.69) (-0.66)

Systemic default 7.47 10.94** 10.34*** 8.81** 7.02*** 5.49***
(1.33) (2.47) (2.72) (2.36) (2.73) (3.18)

Manufacturing
Industry default 34.52*** 22.95*** 9.64 5.27 4.83 4.95**

(3.33) (2.98) (0.47) (1.14) (1.72) (2.16)
Systemic default -10.89** -3.67 1.35 2.05 1.55 2.16**

(-2.25) (-0.88) (0.48) (1.09) (1.04) (2.26)
Energy

Industry default 3.39 2.34 0.97 -0.19 -1.07 -0.26
(1.21) (1.05) (0.48) (-0.12) (-0.68) (-0.21)

Systemic default -7.73** -4.33 -2.43 -0.37 -0.21 0.17
(-2.09) (-1.56) (-1.19) (-0.25) (-0.21) (0.28)

Chemicals
Industry default 0.14 0.90 -0.08 0.14 0.57 -0.26

(0.09) (1.25) (-0.16) (0.30) (1.42) (-0.58)
Systemic default 0.11 2.18 3.14* 2.23* 1.77 3.33***

(0.03) (0.78) (1.85) (1.80) (1.46) (3.03)
Business equipment

Industry default -0.79 -3.56 -3.29 -1.39 -2.08 -1.39
(-0.19) (1.06) (-1.15) (-0.51) (-0.74) (-0.47)

Systemic default 4.63 7.42* 6.99** 3.14 2.12 2.11
(1.02) (1.91) (2.43) (1.61) (1.08) (1.06)

Telecom
Industry default -1.45 -2.05 -0.89 -0.35 -0.69 -1.17

(-0.44) (-0.74) (-0.33) (-0.14) (-0.29) (-0.81)
Systemic default 1.80 1.60 2.21 2.64 3.61** 4.69**

(0.63) (0.67) (1.17) (1.26) (2.06) (2.46)
Utilities

Industry default 1.46 3.64*** 4.17*** 4.50*** 4.30*** 2.79***
(0.51) (2.82) (4.50) (7.20) (8.79) (11.75)

Systemic default -0.44 0.67 1.78 2.18*** 2.70*** 2.62***
(-0.17) (0.40) (1.64) (2.58) (4.30) (3.00)

Shops
Industry default -4.70 -31.07 -39.66* -25.20* -17.87* 12.89

(-0.11) (-1.03) (-1.79) (-1.89) (-1.65) (1.60)
Systemic default 7.52 19.31* 22.77*** 14.65*** 11.10*** -0.20

(0.47) (1.88) (2.89) (3.10) (2.84) (-0.05)
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Health
Industry default -3.75 -1.15 -0.10 1.43 0.37 -1.90

(-1.03) (-0.34) (-0.03) (0.44) (0.12) (-1.21)
Systemic default 3.89 4.53** 4.55*** 0.93 0.40 2.61*

(1.30) (2.00) (2.87) (0.64) (0.25) (1.76)
Finance

Industry default -2.90 -4.63* -4.28** -2.30 -1.61 0.02
(-0.77) (-1.80) (-1.97) (-1.19) (-0.83) (0.01)

Systemic default 2.75 7.68** 7.60*** 4.88*** 3.98*** 3.91***
(0.44) (2.23) (4.61) (4.31) (3.53) (8.22)

Other
Industry default 1.67 -1.28 -1.79 -0.30 0.84 1.30

(0.31) (-0.34) (-0.55) (-0.12) (0.38) (0.93)
Systemic default -0.69 4.96 6.06** 3.87* 2.67* 2.52*

(-0.12) (1.27) (2.42) (1.69) (1.71) (1.93)
Avg Industry default 2.10 -0.99 -3.09 -1.67 -1.42 0.68
Mean test, χ2 0.32 0.16 2.83* 2.02 1.71 0.42
Mean test, p-value (0.572) (0.693) (0.092) (0.155) (0.191) (0.515)
Joint test, χ2 20.82* 22.65** 45.46*** 131.73*** 445.98*** 1017.93***
Joint test, p-value (0.053) (0.031) (0.000) (0.000) (0.000) (0.000)

Avg Systemic default 0.88 4.60 5.83 4.16 3.46 3.01
Mean test, χ2 0.06 3.19* 14.01*** 9.53*** 8.13*** 8.28***
Mean test, p-value (0.813) (0.074) (0.000) (0.002) (0.004) (0.004)
Joint test, χ2 41.52*** 102.88*** 137.00*** 161.83*** 200.90*** 2228.61***
Joint test, p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Obs Per Industry 453 448 442 430 418 394

Panel B: Industry Equal-weighted Returns
1M 6M 12M 24M 36M 60M

Non-Durables
Industry default 15.11 24.36*** 12.71** 8.08** 6.73*** 5.32

(1.13) (2.93) (1.99) (2.17) (3.56) (1.26)
Systemic default -0.80 3.75 8.00** 6.32*** 4.29*** 4.18**

(-0.21) (0.83) (2.22) (4.24) (4.30) (2.36)
Durables

Industry default -3.38 0.42 2.42 2.98 1.34 1.69
(-0.56) (0.08) (0.57) (0.99) (0.56) (1.22)

Systemic default 4.99 12.80** 13.83*** 10.26*** 7.50*** 4.66***
(0.89) (2.38) (3.02) (3.12) (3.30) (3.14)

Manufacturing
Industry default 40.43*** 35.96*** 19.54** 14.55** 14.61*** 12.82***

(3.03) (4.10) (2.39) (2.54) (5.18) (5.61)
Systemic default -13.21*** -5.23 1.38 1.76 -0.04 -0.30

(-2.61) (-1.13) (0.35) (0.61) (-0.02) (-0.20)
Energy

Industry default -1.24 -2.77 -3.99 -4.53 -5.25 -1.89
(-0.30) (-0.64) (-1.07) (-1.33) (-1.52) (-0.59)

Systemic default -11.71 -5.24 -2.61 -1.23 -2.42 -4.73*
(-1.64) (-0.75) (-0.53) (-0.24) (-0.59) (-1.86)
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Chemicals
Industry default 2.01 4.04*** 2.26** 1.76** 1.71*** -0.09

(0.67) (2.92) (2.41) (2.30) (3.13) (-0.15)
Systemic default 1.03 7.11* 9.32*** 8.06*** 5.90*** 4.43***

(0.20) (1.74) (3.55) (3.34) (3.25) (4.74)
Business Equipment

Industry default 8.87 8.66 8.83** 13.97*** 13.67*** 11.73***
(1.61) (1.55) (2.02) (5.20) (7.25) (6.58)

Systemic default 0.60 8.34 9.30** 2.69 -0.44 -0.94
(0.10) (1.41) (2.18) (0.76) (-0.16) (-0.33)

Telecom
Industry default -4.75 -3.29 -0.92 -0.97 -2.40 -3.05

(-0.95) (-0.67) (-0.22) (-0.30) (-0.85) (-1.34)
Systemic default 2.57 9.49 10.02** 6.76 7.05** 8.38**

(0.50) (1.61) (2.11) (1.48) (2.23) (2.45)
Utilities

Industry default 2.03 3.99*** 4.17*** 3.74*** 3.42*** 1.48***
(0.73) (3.16) (7.34) (8.10) (8.83) (4.66)

Systemic default 0.49 1.70 2.62*** 3.04*** 3.23*** 3.09**
(0.20) (1.11) (2.72) (4.12) (4.86) (2.41)

Shops
Industry default -62.38 -93.41* -104.98* -82.60* -76.27* -11.61

(-1.12) (-1.74) (-1.77) (-1.81) (-1.89) (-0.88)
Systemic default 27.72 45.46** 50.50** 38.43** 33.30** 7.89

(1.26) (2.31) (2.33) (2.25) (2.20) (1.46)
Health

Industry default -0.84 3.20 5.62 9.64*** 10.37*** 8.88***
(-0.20) (0.77) (1.30) (3.30) (4.99) (4.38)

Systemic default 7.36 14.59*** 15.67*** 6.74*** 2.52 0.66
(1.45) (3.01) (5.13) (3.00) (1.54) (0.36)

Finance
Industry default -2.87 -4.18 -4.02 -2.57 -1.49 0.35

(-0.76) (-1.44) (-1.44) (-0.86) (-0.50) (0.13)
Systemic default 1.01 6.75* 7.46*** 5.80*** 4.63* 3.40*

(0.18) (1.87) (2.72) (2.90) (1.85) (1.90)
Other

Industry default 5.47 2.63 2.92 5.54* 6.47** 5.63***
(0.95) (0.55) (0.72) (1.76) (2.33) (2.76)

Systemic default -1.03 8.10 9.28** 4.12 1.46 0.27
(-0.15) (1.48) (2.45) (1.31) (0.65) (0.14)

Avg Industry default -0.13 -1.70 -4.62 -2.53 -2.26 2.61
Mean test, χ2 0.00 0.15 0.92 0.45 0.43 3.43*
Mean test, p-value (0.976) (0.694) (0.337) (0.500) (0.513) (0.064)
Joint test, χ2 20.68* 39.69*** 85.52*** 211.14*** 608.78*** 610.46***
Joint test, p-value (0.055) (0.000) (0.000) (0.000) (0.000) (0.000)
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Avg Systemic default 1.58 8.97 11.23 7.73 5.58 2.58
Mean test, χ2 0.09 4.21** 12.12*** 7.70*** 5.61** 3.48*
Mean test, p-value (0.759) (0.040) (0.000) (0.006) (0.018) (0.062)
Joint test, χ2 60.96*** 168.54*** 205.29*** 201.08*** 596.88*** 1711.12***
Joint test, p-value (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Obs Per Industry 453 448 442 430 418 394

The table reports estimates of rit=ai+bip
ind
i,t−1+cip

agg
t−1+εit,i=1,...,12. in a joint GMM estimation.

rit represents Fama-French 12 industry equity returns (at different horizons), either value-weighted
(Panel A) or equal-weighted (Panel B) and pindi,t−1 is the probability that at least 2% of an industry’s
above median firms will default in the next year, estimated as of the end of the month before
the returns period. paggt−1 is similarly the probability that at least 2% of S&P 500 firms will default
over the next year. t-statistics in parentheses are based on a Newey-West spectral density matrix
that allows for both autocorrelation and cross-correlation across GMM moment conditions. The
bottom of each panel reports the average bi and also Wald tests for whether the average bi is zero
and whether all of the bi’s are jointly equal to zero. Similar statistics are also reported for ci. 1%,
5%, and 10% statistical significance are indicated by ***, **, and ** respectively.
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Appendix

A Calculating Joint Default

Given k firms with independent defaults, it is in principle possible to calculate probabilities for

all 2k possible outcomes and to use the 2k possible outcomes to determine the probability that

at least x% of the firms default. In practice, such an enumeration is computationally infeasible for

large k. Instead, we take advantage of the fact that we are only counting the number of firms that

default and propose a numerical solution that we describe below using an example where k=16.

Step 1: For reach firm, create a vector with the survival and default probabilities, where pi

represents the survival probability of firm i.

 p1

1−p1

,...,
 p16

1−p16


Step 2: Pair each of the 16 firms and multiply their vectors

 p1

1−p1

(p2 1−p2

)
=

 p1p2 p1(1−p2)

p2(1−p1) (1−p1)(1−p2)


Transform the matrix into a vector that stacks the probabilities of 0, 1, and 2 defaults for each pair.


p1p2

p1(1−p2)+p2(1−p1)

(1−p1)(1−p2)


There are now eight such vectors.
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Step 3: Pair the remaining eight vectors into pairs and perform vector multiplication again


p1p2

p1(1−p2)+p2(1−p1)

(1−p1)(1−p2)


(
p3p4 p3(1−p4)+p4(1−p3) (1−p3)(1−p4)

)

Step 4: Repeat until there is only one remaining vector. Such a vector will be 17×1 and contain

the probabilities of 0, 1, ..., 16 defaults.

B Value of Defaulting Firms

Throughout the paper, we have defined systemic default as the probability that at least x% of

firms default, with an emphasis on 2% of firms defaulting over the next year. Our choice of

looking at the % of firms defaulting rather than the % of total firm value defaulting is due to the

fact that using a percentage of firm value defaulting makes the probability of joint default very

sensitive to the very largest firms. If only one or two very large firms have poor credit conditions,

the probability of reaching at least 2% of total firm value defaulting is already relatively high. Our

goal is to measure the probability where a number of firms jointly default because of a negative

market shock rather than a scenario where a single large firm suffers a negative idiosyncratic shock

and defaults. Nevertheless, one could argue that 2% of firms defaulting is not a systemic default

event if the firms defaulting consist of a very small proportion of the total value of firms in the

sample. Thus, we consider the probability that at least 2% of firms default along with at least x%

of total firm value. This imposes an additional restriction that not only do a significant number

of firms need to default, but that the firms must have a total market value that is significant. The

base case in the paper is x = 0. Here, we also consider x = 1 and x = 2.

Calculating value-weighted default is significantly more complicated than calculating the

number of firms that default. The dimensionality reduction used to calculate the probability

that N firms default no longer applies because we not only need to keep track of the number of
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firms that default in each scenario, but also the value that has defaulted. In particular, when

only counting the number of firms that default, all scenarios where 5 firms default are equivalent.

When considering the value defaulted, all of the various scenarios where 5 firms default needed to

be treated separately because the value defaulted is different. Enumerating over 2500=3.27×10150

is infeasible, at least with current computing power. Thus, we consider two alternative techniques:

(1) simulations and (2) a numerical approximation.

Estimating the probability that at least 2% of firms and x% of value defaults using a simulation is

straightforward. In each simulation, we simply need to simulate a market shock and a set of idiosyn-

cratic firm shocks. We then determine which firms have V <K and then determine the number and

value of defaulted firms. For each month that joint default is estimated, we run 5,000,000 simulations.

The numerical approximation is based on reducing the dimensionality of the problem. We treat each

of the 16 largest firms (by total firm value, V ) in each month as individual firms. For the rest of the

S&P 500 firms, we sort the firms (in descending order) by firm value and put them into 10 different

bins, with the 10 bins containing 1%, 1%, 2.5%, 2.5%, 5%, 5%, 15%, 17.5%, 22.5%, and 28% of the

remaining firms respectively. Within each bin, we calculate the average firm value and treat all firms

as having that firm value. This allows us to use the dimension reduction technique in Appendix A

within each bin. The choice of having fewer firms in bins with larger firms is due to the fact that it is

less of an issue to treat smaller firms as roughly homogeneous. This allows us to then calculate the

probability that at least 2% of firms and x% of firm value defaults, conditional on an aggregate shock

by enumerating over the possible outcomes of the 16 individual firms and 10 bins. The unconditional

probability is then calculated by integrating over the aggregate shock as in equation (12). We find

that our numerically calculated series and simulation based estimates have a correlation of over 99%.

In Figure 3, we plot our estimates of the probability that 2% of firms default and at least x% of

firm value defaults. It is clear from the plot that the correlation between the probability that at least

2% of firms default without a value restriction with the series if we impose that at least 1% (0.9584)

or 2% (0.9175) of firm value also defaults is high. Essentially, the firm value constraint is often not

binding. The intuition from this result arises from the fact that in most periods, when 2% of firms
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default, the value of default firms is easily over 2%. Over the full sample, if the 2% of riskiest firms

(measured as having the smallest distance-to-default using the Merton-based model in our paper)

were to default, the mean value defaulted is 5.33% and the median is 4.96%. Notable periods where

less than 2% of value would default if the 2% of riskiest firms defaulted are the pre-1980 period and

parts of the period between 1999 and 2003. In the pre-1980 period, we see that the probability that

2% of firms default (without a value constraint) is higher than if we also impose that at least 1%

or 2% of firm value defaults. In the 1999 - 2003 period, we see that the default probability is zero

for part of the period and at the tail end of the period, the probability of 2% of firms defaulting

is slightly higher than the probability that 2% of firms default and at least 2% of firm value also

defaults. Overall, the inclusion of a value constraint has little effect on our joint default series.
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